Abstract:
A hybrid interconnect structure includes a graphene layer between a non-metallic material layer and a metal layer, and a first interfacial bonding layer between the non-metallic material layer and the graphene layer, or the metal layer and the graphene layer. The graphene layer connects the non-metallic material layer and the metal layer, and the first bonding layer includes a metallic material.
Abstract:
A wiring structure may include at least two conductive material layers and a two-dimensional layered material layer in an interface between the at least two conductive material layers. The two-dimensional layered material layer may include a grain expander layer which causes grain size of a conductive material layer which is on the two-dimensional layered material layer to be increased. Increased grain size may result in resistance of the second conductive material layer to be reduced. As a result, the total resistance of the wiring structure may be reduced. The two-dimensional layered material layer may contribute to reducing a total thickness of the wiring structure. Thus, a low-resistance and high-performance wiring structure without an increase in a thickness thereof may be implemented.