Abstract:
A method includes identifying one or more codewords of a bit sequence that fail to satisfy at least one codeword constraint. The method also includes removing the one or more codewords from the bit sequence to generate a punctured bit sequence. The method includes, in response to determining that the punctured bit sequence is symmetric, generating a hermitian symmetric codebook primitive based at least in part on the punctured bit sequence, where the hermitian symmetric codebook primitive is useable to form a diffractive optical element (DOE) of a structured light depth sensing system.
Abstract:
Aspects relate to a method of generating a high-resolution image containing depth information of an object. In one aspect, the method includes downsampling a first reference image and a second reference image from a first resolution to a second resolution, wherein the first resolution is higher than the second resolution, and wherein the first reference image and the second reference image comprising a stereo image pair. The method further includes generating a depth map at the second resolution based on global minimization techniques, using the downsampled stereo image pair. The method also includes upsampling the depth map from the second resolution to the first resolution and using a guided filter to align contours of the upsampled depth map to contours of the first reference image.
Abstract:
Certain aspects relate to systems and techniques for performing local intensity equalization on images in a set of images exhibiting local intensity variations. For example, the local intensity equalization can be used to perform accurate region matching and alignment of the images. The images can be partitioned into regions of pixel blocks, for instance based on location, shape, and size of identified keypoints in the images. Regions depicting the same feature in the images can be equalized with respect to intensity. Region matching based on the keypoints in the intensity-equalized regions can be performed with accuracy even in images captured by asymmetric sensors or exhibiting spatially varying intensity.