Abstract:
Methods, systems, and devices for dynamic rate matching patterns for spectrum sharing are described. In some examples, a user equipment (UE) may measure one or more interference levels associated with resources of a physical resource block (e.g., interference levels associated with respective subcarriers or other division in the frequency domain, with respective symbol durations or other division in the time domain, or a combination thereof), and determine a rate matching pattern based on the interference level measurements. In some examples, the rate matching pattern may include a pattern of resources for communications between the UE and a base station (e.g., for downlink communications). The UE may transmit an indication of the rate matching pattern to the base station, and the base station may schedule or transmit one or more subsequent downlink transmissions based at least in part on the indication of the rate matching pattern received from the UE.
Abstract:
In some aspects, a method of wireless communication includes receiving control information by a UE from a base station. The control information indicates one or more first frequency resources of a BWP that are associated with a first communication type and further indicates one or more second frequency resources of the BWP that are associated with a second communication type. The method further includes, based on a first data type of first data corresponding to the first communication type and further based on a second data type of second data corresponding to the second communication type, performing a wireless communication with the base station using the one or more first frequency resources to communicate the first data and using the one or more second frequency resources to communicate the second data.
Abstract:
A user equipment (UE) speeds up circuit switched fallback call establishment and reduces circuit switched fallback call establishment failure. In one instance, the UE receives a redirection command including a list of current neighbor cells/frequencies. The UE determines whether a current serving cell matches a previous serving cell stored in the UE. The UE also evaluates the list of current neighbor cells to determine whether each current neighbor cell matches a previous neighbor cell associated with the previous serving cell. The UE then determines neighbor cells for power scan and/or synchronization channel decoding procedures to select one of the current neighbor cells to redirect the UE based on the previously recorded type of redirection result.
Abstract:
A method and apparatus for wireless communication stores synchronization channel (SCH) timing for each identified Global System for Mobile Communications (GSM) cell. The stored SCH timing is used to perform base station identity code (BSIC) reconfirmation for an identified GSM cell without frequency correction channel (FCCH) tone detection and initial BSIC confirmation. The stored SCH timing is maintained across a plurality of user equipment (UE) states.
Abstract:
A user equipment (UE) reduces delays during cell reselection for a circuit switched call back (CSFB) voice call in a radio access technology (RAT). In one instance, the UE prevents cell reselection from a first cell of a RAT to a second cell of the same RAT during system information collection of the first cell. In some instances, the preventing is based on a signal strength of the first cell or a signal strength difference between the first cell and the second cell.
Abstract:
A method for handling grants includes communicating with a first radio access technology (RAT). An uplink grant that corresponds to at least one uplink timeslot overlapping with a measurement signal from a second RAT is discarded. The discarding of the uplink grant is based at least in part on a signal quality of the first RAT. Measurement of the second RAT during the at least one uplink timeslot is performed.
Abstract:
An early BSIC (base station identity code) abort procedure includes comparing a first signal strength of a serving cell with a first threshold and comparing a second signal strength of a target cell to a second threshold. The first threshold is a sum of a network indicated threshold and a user equipment (UE) threshold. The second threshold is a difference between the network indicated threshold and the UE threshold. When the first signal strength is below the first threshold and the second signal strength is above the second threshold, the base station identity code (BSIC) procedure is initiated. A number of BSIC failure attempts is adaptively set before terminating the BSIC procedure.
Abstract:
A method of wireless communication enables an inter-radio access technology (IRAT) neighbor cell measurement when a serving RAT signal strength is continuously below a first threshold value for a first length of time. The method also disables the IRAT neighbor cell measurement when the serving RAT signal strength is continuously above a second threshold value for a second length of time.
Abstract:
A method of wireless communication receives a frequency list for fast return when in idle mode in a first radio access technology (RAT). The method updates the frequency list for fast return to the first RAT while in connected mode in the first RAT. The update is based on inter and intra frequency measurement control messages from each serving base station during mobility.
Abstract:
A user equipment (UE) may perform an inter radio access technology (IRAT) measurement in time slots not deemed to be carrying critical data. In such instances, the UE only transmits and decodes critical data in the critical time slots when a serving cell signal is low for a determined period of time. Otherwise, when the time slots do not carry critical data, i.e., non-critical time slots, the UE stops transmitting and decoding and uses the non-critical time slots for IRAT measurement.