Abstract:
A refrigerator includes a cabinet configured to be formed with a first storage chamber and a second storage chamber, a first door configured to open and close the first storage chamber, a second door configured to open and close the second storage chamber, a first cooler and a heater configured to adjust the temperature of the first storage chamber, a second cooler configured to adjust a temperature of the second storage chamber, and a controller configured to perform a general operation of the first storage chamber in preference to door load response operation of the second storage chamber, of the general operation of adjusting the temperature of the first storage chamber and the door load response operation of the second storage chamber.
Abstract:
A refrigerator includes a cabinet configured to form a storage space, a temperature adjusting device configured to cool the storage space, a fan configured to blow air heat-exchanged with the temperature adjusting device to the storage space, a heating device configured to heat the storage space, and a controller configured to control the fan and the heating device, in which the controller starts a humidity care mode which drives the fan if a door that opens and closes the storage space is in a closed state, the temperature adjusting device is not operated, and the heating device is off.
Abstract:
A method for controlling a refrigerator includes turning on a compressor to operate with a predetermined cooling power for cooling a storage compartment, turning off the compressor when a temperature of the storage compartment reaches a temperature equal to or lower than a first reference temperature, and turning on the compressor again when the temperature of the storage compartment reaches a temperature equal to or higher than a second reference temperature higher than the first reference temperature. In the turning on the compressor again, the compressor is operated with a cooling power determined based on an on slope, which is a temperature change slope of the storage compartment during an on time of the compressor, and an off slope, which is a temperature change slope of the storage compartment during an off time of the compressor.
Abstract:
A refrigerator includes a compressor, a condenser, a first evaporator connected with a first evaporator inlet path and a first evaporator outlet path, a second evaporator connected with a second evaporator inlet path and a second evaporator outlet path, a third evaporator connected with a third evaporator inlet path and a third evaporator outlet path, a path switching device, and a controller for controlling the compressor and the path switching device based on at least one mode.
Abstract:
A refrigerator is provided that may include at least one compressor that compresses a refrigerant, a condenser that condenses the refrigerant compressed in the at least one compressor, a refrigerant tube that guides the refrigerant condensed in the condenser, a plurality of evaporation passages, in which expansion devices may be respectively disposed, the plurality of evaporation passages branching from the refrigerant tube, a flow adjuster disposed in the refrigerant tube to supply the refrigerant into at least one evaporation passage of the plurality of evaporation passages, a plurality of evaporators, respectively, connected to the plurality of evaporation passages to evaporate the refrigerant decompressed in the plurality of expansion devices, and a liquid refrigerant supply device disposed at an outlet-side of the condenser to separate a liquid refrigerant of the refrigerant heat-exchanged in the condenser, thereby supplying the liquid refrigerant into the flow adjuster.
Abstract:
A refrigerant is provided that may include at least one compressor that compresses a refrigerant, a condenser that condenses the refrigerant compressed in the at least one compressor, a first expansion device that decompresses the refrigerant condensed in the condenser, a gas/liquid separator that separates the refrigerant decompressed in the first expansion device into a liquid refrigerant and a gaseous refrigerant, first and second evaporators, to which the liquid refrigerant separated in the gas/liquid separator may be introduced, and a second expansion device disposed at an inlet-side of the second evaporator to decompress the refrigerant.
Abstract:
Provided are a refrigerator and a method of controlling the refrigerator. The method includes driving a refrigerating cycle that includes a first evaporator and a second evaporator by activating a compressor and simultaneously supplying cold air to a refrigerator compartment and a freezer compartment by supplying refrigerant to the first and second evaporators according to the driving of the refrigerating cycle. The method may further include preventing the refrigerant from being introduced into the second evaporator by more than a first prescribed amount by increasing, for a first prescribed amount of time, a flow rate of the refrigerant supplied to the first evaporator; and preventing the refrigerant from being introduced into the first evaporator by more than a second prescribed amount by increasing, for a second prescribed amount of time, a flow rate of the refrigerant supplied to the second evaporator.
Abstract:
A heat exchanger assembly, a refrigerator, and a method of controlling a refrigerator are provided. The heat exchanger assembly may include a heat exchanger provided on or at a side of a refrigerator body, the heat exchanger including a refrigerant tube, in which a refrigerant may flow, and at least one heat exchange fin, in which the refrigerant tube may be inserted, a temperature sensor disposed on or at an inlet-side or an outlet-side of the heat exchanger to detect a temperature of the refrigerant, and a sensor holder to fix a guide tube disposed on or at an inlet-side or outlet-side of the refrigerant tube and the temperature sensor in a state in which the guide tube is in contact with the temperature sensor.