Abstract:
In a mailing machine, an image element included in a postage meter indicium printed on a mail piece is transported past a linear image capture device. The image capture device is operated to produce a smeared image of the image element. The smeared image is then automatically analyzed to detect failures in the print elements of a postage meter that is part of the mailing machine.
Abstract:
Systems and methods are provided for detecting abnormal conditions and preventing abnormal situations from occurring in controlled processes. Statistical signatures of a monitored variable are modeled as a function of the statistical signatures of a load variable. The statistical signatures of the monitored variable may be modeled according to an extensible regression model or a simplified load following algorithm. The systems and methods may be advantageously applied to detect plugged impulse lines in a differential pressure flow measuring device.
Abstract:
A digital filter design algorithm is implemented directly within a process control field device or other process related equipment. Filter design parameters are exposed so that filter design parameter values may be provided to the digital filter design algorithm so that the digital filter design algorithm may calculate digital filter coefficients for a digital filter having desired frequency response characteristics. The digital filter design parameter values may be provided by a user, or may be provided as process variable data output from a process control field device or other process related equipment. Once the coefficients of the digital filter having the desired frequency response characteristics have been calculated, the digital filter may be applied to process variable data received by the process control field device or other process related equipment.
Abstract:
A method and apparatus for printing an image on a print medium using an ink jet print head in an apparatus having an encoder system. The method includes generating a first firing pulse for the print head and starting a timer, waiting to receive an encoder signal from the encoder system and determining whether the timer has reached a preset time limit after the encoder signal is received, generating a second firing pulse for the print head if it is determined that the timer has reached the preset time limit after the encoder signal is received, and waiting for the timer to reach the preset time limit and generating a second firing pulse for the print head when the preset time limit is reached if it is determined that the timer has not reached the preset time limit after the encoder signal is received.
Abstract:
A system for visually presenting data receives signal processing data generated signal processing data collection blocks corresponding to devices associated with a process plant. The signal processing data collection blocks may generate data such as statistical data, frequency analysis data, auto regression data, wavelets data, etc. The system displays an image representative of the devices and representative of a context of the devices within the process plant. Additionally, data based on signal processing data corresponding to one or more devices is displayed. For example, the signal processing data for the device could be displayed. As another example, data may be generated based on the signal processing data and this generated data may be displayed.
Abstract:
A method and system for detecting and/or predicting abnormal solids buildup in a main fractionator bottom of a fluid catalytic cracking system measures one or more process parameters of the fluid catalytic cracking system (such as a differential pressure across a reactor cyclone, a noise after the main fractionator bottom, a heat transfer at the steam generator, and/or a differential pressure across the main fractionator) and determines abnormal solids buildup when the measured process parameter(s) changes significantly from a baseline value. The method and system implements algorithms using computing devices to detect or predict an abnormal condition based on the change in the process parameter.
Abstract:
A system and method of monitoring and diagnosing on-line multivariate process variable data in a process plant, where the multivariate process data comprises a plurality of process variables each having a plurality of observations, includes collecting on-line process data from a process control system within the process plant when the process is on-line, where the collected on-line process data comprises a plurality of observations of a plurality of process variables, performing a multivariate statistical analysis to represent the operation of the process based on a set of collected on-line process data comprising a measure of the operation of the process when the process is on-line, where the representation of the operation of the process is adapted to be executed to generate a result, storing the representation of the operation of the process and the set of collected on-line process data, and generating an output based on a parameter of the representation of the operation of the process, where the parameter of the representation of the operation of the process comprises one or more of a result generated by the representation of the operation of the process, a process variable used to generate the representation of the operation of the process and the set of collected on-line process data.
Abstract:
In methods and systems that may facilitate detecting abnormal operation in a process plant, values of a process variable are analyzed to determine whether they significantly deviate from expected values. If there is a significant deviation, an indicator may be generated. Analyzing the process variable may include, for example, utilizing a plurality of thresholds determined based on statistics of the process variable. Analyzing the process variable may also include, for example, determining whether a first number of values of the process variable are in a first region, and whether a second number of values are in a second region.
Abstract:
A top registration transport mechanism and method for a mailing machine is provided. The transport mechanism includes one or more displaceable rollers that have a diameter larger than the drive/idler rollers. A semi-elastic belt is looped around the drive/idler rollers and displaceable rollers. The larger diameter of the displaceable rollers causes a portion of the transport belt in the area of the displaceable rollers to be slightly raised. The registration plate can contact the raised portion of the belt to displace the belt and displaceable rollers, thereby ensuring that very thin mail pieces can be effectively processed by the transport. As thicker mail pieces traverse the transport, the displaceable rollers can be further displaced before the entire transport mechanism must be displaced to maintain registration of the mail piece against the bottom of the registration plate.
Abstract:
A device for moistening an envelope flap includes a mechanism which defines an envelope feed path and a plate disposed adjacent the envelope feed path. The plate passes between the envelope body and the envelope flap. A plurality of orifices formed in the plate discharge moistening fluid received from a reservoir onto the envelope flap. The moistening device also includes a valve mechanism to selectively supply each of the orifices with moistening fluid from the reservoir. A flap sensing mechanism is disposed adjacent the envelope feed path for sensing an edge portion of the envelope flap and operatively connected to the valve mechanism to supply signals to the valve mechanism to selectively actuate the valve mechanism to selectively supply moistening fluid to the orifices in response to the sensing of the edge portion of the envelope flap.