Abstract:
The present invention provides an apparatus and a method for identifying the risk of a clinical condition in a human or animal by correlating Near Infrared (NIR) absorbance spectral data with one or several parameters including a concentration of one or more substances in the skin, a concentration of one or more substances in skin plus subdermal tissue, a score derived from one or more clinical tests like a stress test on a treadmill, coronary angiography, or intravascular coronary ultrasound. The method determines the concentration of a compound in the skin of a human or animal and comprises the steps of placing a part of the skin against a receptor, directing electromagnetic radiation (EMR) from the near-infrared spectrum onto the skin, measuring a quantity of EMR reflected by, or transmitted through, the skin with a detector; and performing a quantitative mathematical analysis of the quantity of EMR to determine the concentration of the compound, for example free and esterfied cholesterol. An example of a clinical condition is cardiovascular disease.
Abstract:
An apparatus and method for spectroscopic measurement of an analyte in a sample is provided. The apparatus comprises a source of electromagnetic radiation (EMR) producing a light path, an aperture located within the light path and between the EMR source and a sample slot, and a photodector. The apparatus also has a primary calibration algorithm that is in operative association with the spectroscopic apparatus. Examples of analytes that may be measured using this apparatus include, but are not limited to Total-Hemoglobin, Met-Hemoglobin, Hemoglobin-based blood substitutes and any Met-Hemoglobin equivalent. The measurement of Met-Hemoglobin may be used to provide an accurate measurement of Total-Hemoglobin in whole blood, or Hemoglobin when used as an indicator of hemolysis. The measurement of Met-Hemoglobin may also be also used as a means of monitoring the degradation or reversal of degradation of Hemoglobin-based blood substitutes, or as a means of monitoring the oxidation or reversal of oxidation of Hemoglobin to Met-Hemoglobin.
Abstract:
A sample lab for retaining a sample during spectrophorometric analysis includes a base plate, a sample well, and a cover plate. The sample tab may also include one, or more than one overflow opening for draining excess sample, and an overflow channel to retain the excess sample.
Abstract:
Described is a method and apparatus for determining a diabetic patient's compliance with their insulin dosing regime. The method and apparatus involves taking a blood sample from a patient by a routine finger prick and placing it in a special sample tab which is placed in a spectrophotometer sample housing. The spectrophotometer measures Hb and HbA1c concentrations and allows for calculating a ratio of HbA1c to Hb which is indicative of the degree of patient compliance.
Abstract:
An apparatus and a method whereby plasma integrity of plasma contained in a blood bag is rapidly and accurately assessed without compromising the sterility of the plasma, or destroying any of its components. This is achieved through spectral data which is used in a novel way so as to determine if a plasma specimen representative of plasma in a blood bag contains interferents and if so, to what extent. The apparatus and method analyse plasma contained in two bags whereby tubing connects the two bags. A lamp is used to irradiate the specimen, and a spectrophotometer is used to measure radiation from the specimen. The apparatus and method allow for determination where both the bags and tubings are translucent and contain writing on their surfaces (e.g., proprietary information), and the light is transmitted through the writings, plastic, and the plasma contained in the bag or tubing.
Abstract:
Apparatus and method for detecting patient sample quality, and/or analytes, in the tip used to aspirate the patient sample liquid and then dispense it onto a slide test element. Spectrophotometric analysis is done on the liquid while still in the tip, by scanning the tip for transmittance in a light-tight enclosure, using NIR and adjacent visible radiation, and detecting the absorbance spectra of the liquid. Thereafter, or prior thereto, the liquid is dispensed onto a dried slide test element for assaying analytes that are not assayed spectrophotometrically, thus enhancing throughput.
Abstract:
Some embodiments of the invention provide a disposable cartridge for rapidly metering a sample for measuring a property of the sample. The cartridge can receive a sample when it is in an unsealed configuration, and a cap is used to facilitate metering of the sample and sealing the cartridge. When the cartridge is in a sealed configuration, pressurised air is used to push the metered sample into a chamber containing at least one reagent, and subsequently into a detection chamber for measuring the property of the sample.
Abstract:
The present invention provides a filtration assembly in the form of a disposable cartridge. A key feature of the invention is a filtration chamber having a porous membrane also referred to as a filter, a sample inlet to the filtration chamber, and an outlet for outflow of the fraction of sample that does not penetrate the membrane. The membrane can be used in any configuration, for example a hollow fiber. The fraction of sample that penetrates the membrane is referred to as the filtrate, and the fraction that does not penetrate the membrane is referred to as the retentate or concentrate. Some uses of the cartridge are to prepare plasma from blood, and to prepare a plasma ultra-filtrate from plasma, without the need for centrifugation. Many therapeutic drugs are highly protein bound, and a plasma ultra-filtrate is sometimes required to measure the unbound biologically active drugs.
Abstract:
A system that is suitable for extracting plasma from blood received from a blood supply is provided. The system comprises a housing, an inlet opening for receiving the blood, a filtration chamber comprising a membrane, and a plasma compartment. The membrane forms a barrier between the blood and the plasma extracted from the blood, and the plasma compartment collects the plasma extracted from the blood. In some embodiments, the system comprises a plasma flow path compression chamber for pulling plasma across the membrane. In some embodiments, the system comprises a blood flow path compression chamber for facilitating blood flow. Some embodiments of the system further comprise means for measuring plasma and blood analytes using spectroscopic and biosensor techniques.
Abstract:
Some embodiments of the invention provide a needle with a sharp open end and a blunt open end, housed in a barrel with an open anterior end and an open posterior end. The barrel can travel along the hub of the needle, for extending the needle for insertion into a blood vessel, and for retracting the needle into the barrel to avoid injury. The blunt open end can be fluidly connected to the inlet opening of a measurement apparatus, so that the blood can flow directly into the measurement apparatus, eliminating the traditional step of transferring the blood from a syringe to the measurement apparatus. The hollow needle assembly can remain attached to the measurement apparatus because of its small size, and the engagement of an optional safety cap to the open anterior end of the barrel, minimizes the risk of injury and blood contamination. Because a small blood sample is required, a very small needle shaft can be used, minimizing the discomfort experienced by the patient.