Abstract:
The present approach relates to the use of detector elements (i.e., reference detector pixels) positioned under septa of an anti-scatter collimator. Signals detected by the reference detector pixels may be used to correct for charging-sharing events with adjacent pixels and/or to characterize or correct for focal spot misalignment either in real time or as a calibration step.
Abstract:
A detector is described having readout electronics integrated in the photodetector layer. The detector may be configured to acquire both energy-integrated and photon-counting data. In one implementation, the detector is also configured with control logic to select between the jointly generated photon-counting and energy-integrated data.
Abstract:
Various approaches are discussed for using four-side buttable CMOS tiles to fabricate detector panels, including large-area detector panels. Fabrication may utilize pads and interconnect structures formed on the top or bottom of the CMOS tiles. Electrical connection and readout may utilize readout and digitization circuitry provided on the CMOS tiles themselves such that readout of groups or sub-arrays of pixels occurs at the tile level, while tiles are then readout at the detector level such that readout operations are tiered or multi-level.
Abstract:
Various approaches are discussed for using four-side buttable CMOS tiles to fabricate detector panels, including large-area detector panels. Fabrication may utilize pads and interconnect structures formed on the top or bottom of the CMOS tiles. Electrical connection and readout may utilize readout and digitization circuitry provided on the CMOS tiles themselves such that readout of groups or sub-arrays of pixels occurs at the tile level, while tiles are then readout at the detector level such that readout operations are tiered or multi-level.
Abstract:
A pixelated gamma detector includes a scintillator column assembly having scintillator crystals and optical transparent elements alternating along a longitudinal axis, a collimator assembly having longitudinal walls separated by collimator septum, the collimator septum spaced apart to form collimator channels, the scintillator column assembly positioned adjacent to the collimator assembly so that the respective ones of the scintillator crystal are positioned adjacent to respective ones of the collimator channels, the respective ones of the optical transparent element are positioned adjacent to respective ones of the collimator septum, and a first photosensor and a second photosensor, the first and the second photosensor each connected to an opposing end of the scintillator column assembly. A system and a method for inspecting and/or detecting defects in an interior of an object are also disclosed.
Abstract:
A system and method for generating a digital image in fluorescence gel imaging is disclosed. The method includes providing a gel sample and placing the gel sample on a flat panel detector having array of photodiodes and transistors that collect light generated from the gel sample. The gel sample is illuminated using a light source integrated into the flat panel imaging system and light emitted by the gel sample responsive to an excitation of the gel sample by light provided by the light source is then collected, with the light emitted by the gel sample being collected by the array of photodiodes of the flat panel detector and converted to electric charges to generate light data. The light data is then processed to generate a digital image of the gel sample.
Abstract:
A system and method for generating a digital image in fluorescence gel imaging is disclosed. The method includes providing a gel sample and placing the gel sample on a flat panel detector having array of photodiodes and transistors that collect light generated from the gel sample. The gel sample is illuminated using a light source integrated into the flat panel imaging system and light emitted by the gel sample responsive to an excitation of the gel sample by light provided by the light source is then collected, with the light emitted by the gel sample being collected by the array of photodiodes of the flat panel detector and converted to electric charges to generate light data. The light data is then processed to generate a digital image of the gel sample.
Abstract:
A system and method for generating a digital image in fluorescence gel imaging is disclosed. The method includes providing a gel sample and placing the gel sample on a flat panel detector having array of photodiodes and transistors that collect light generated from the gel sample. The gel sample is illuminated using a light source integrated into the flat panel imaging system and light emitted by the gel sample responsive to an excitation of the gel sample by light provided by the light source is then collected, with the light emitted by the gel sample being collected by the array of photodiodes of the flat panel detector and converted to electric charges to generate light data. The light data is then processed to generate a digital image of the gel sample.