Abstract:
A gradient coil comprises a curved conductor, which is tubular and has a general spiral shape. The curved conductor is formed by a process comprising depositing at least one non-conductive material layer by layer to form a substrate, and coating at least a portion of a surface of the substrate with a conductive material. The substrate has a shape matching with the general spiral shape of the curved conductor. Embodiments of the present disclosure further refer to a method for manufacturing the gradient coil.
Abstract:
A method of making an article of manufacture is provided and includes the steps of spraying a first coating onto a substrate, and depositing a second coating on the first coating by 3-D printing a material disposed in a pattern. The pattern includes ridges disposed at a base surface of a turbine part. Each ridge defined by first and second sidewalls, each sidewall having a first and second end. The ends extend from the base surface, the sidewalls slope toward each other until meeting at second ends of respective first and second sidewalls defining a centerline and a top portion of the ridge. The sidewalls are inclined with substantially equal but opposite slopes with respect to the base surface. The ridges correspond to a back portion of a turbine bucket and are oriented at a first angle with respect to an axis of rotation of the bucket.
Abstract:
A component formed by an additive manufacturing process includes a body and a first vibration damper. The body is formed from an additive manufacturing material, and defines at least a first cavity completely enclosed within the body. The first vibration damper is disposed within the first cavity. The first vibration damper includes a flowable medium and a first solidified element formed from the additive manufacturing material. The flowable medium surrounds the first solidified element.