Abstract:
Various embodiments include gas turbine seals and methods of forming such seals. In some cases, a turbine includes: a first arcuate component adjacent to a second arcuate component, each arcuate component including one or more slots located in an end face, each of the one or more slots having a plurality of axial surfaces and radially facing surfaces extending from opposite ends of the axial surfaces and a seal assembly disposed in the slot. The seal assembly including a backup intersegment seal disposed in the slot on a high-pressure side of the slot and a shim seal disposed in the slot over the backup intersegment seal and covering the backup intersegment seal on a low-pressure side of the slot. The shim seal including one or more shim seal segments and having a gap formed between each of the one or more shim seal segments.
Abstract:
The present disclosure relates to a turbomachine that includes a first component and a second component coupled to another and a seal assembly between the two components. The seal assembly may include a first intersegment seal, a second intersegment seal, and a rope seal that are configured to block a flow of gas between the two components.
Abstract:
The present disclosure relates to a turbomachine that includes a first component and a second component coupled to another and a seal assembly disposed between the two components. The seal assembly may include an upstream corner shim, a downstream corner shim, and/or one or more intersegment seals that are configured to block a flow of fluid between the two components.
Abstract:
A seal for a rotary machine includes a flexible element extending circumferentially about a rotor and extending generally radially from a first end to a free second end. The flexible element is coupled proximate the first end for rotation with the rotor. The flexible element extends at substantially a first angle between at least an intermediate portion of the flexible element and the free second end when the rotor is operating at less than a critical speed, such that a clearance gap is defined between the free second end and a stationary portion. The seal also includes a retaining plate having a stop that orients the flexible element at a second angle proximate the free second end when the rotor is operating at equal to or greater than the critical speed, such that the flexible element forms a dynamic seal between the rotor and the stationary portion.
Abstract:
A seal assembly for a rotary machine is provided. The seal assembly includes a shim seal including multiple seal plates forming a box shaped shim seal. The box shaped seal includes a plurality of cuts at two opposing sides or corners for allowing high pressure fluid to occupy the cavity of the box-shaped shim seal. The seal may be inserted within one or more slots between adjacent stator components of the rotary machine.
Abstract:
A device including a conjoined laminate interface seal shaped for reducing inter-seal gap (e.g., an angled gap, an ‘L’-shaped gap, etc.) leakage in gas turbines is disclosed. In one embodiment, a seal device for a gas turbine includes: a first flange shaped to be disposed within a first slot of a first arcuate component and a first adjacent slot of a second arcuate component; a conjoined layer connected to a first surface of the first flange, the first surface configured to face a working fluid flow of the gas turbine; and a second flange shaped to be disposed within a second slot of the first arcuate component and a second adjacent slot of the second arcuate component, the second flange including a second surface connected to the conjoined layer.
Abstract:
An abradable insert for a gas turbine engine, the abradable insert including: a base layer; a lattice layer connected to the base layer, wherein the lattice layer comprises a series of walls that define a plurality of cells; and a sheet layer connected to the lattice layer on an opposite side on the lattice layer from the base layer, wherein the sheet layer is curved and includes a direction of concavity that points away from the base layer, wherein the lattice layer and the sheet layer are integrally formed together and are a monolithic piece of material.
Abstract:
A flexible seal is used to seal between two adjacent gas turbine components. The flexible seal includes at least one metal ply having a forward end, an aft end axially separated from the forward end, and an intermediate portion between the forward end and the aft end. The intermediate portion defines a continuous curve in the circumferential direction, such that the aft end is circumferentially, and optionally radially, offset from the forward end. A plurality of relief cuts is defined through the at least one metal ply between the forward end and the aft end to increase flexibility and improve sealing in seal slots that are radially offset from one another.
Abstract:
A flexible seal for sealing between two adjacent gas turbine components includes a forward end, an aft end axially separated from the forward end, and an intermediate portion between the forward end and the aft end. The intermediate portion defines a continuous curve in the circumferential direction, such that the aft end is circumferentially offset from the forward end. In other cases, the forward and aft ends are axially, radially, and circumferentially offset from one another. A method of sealing using the flexible seal includes inserting, in an axial direction, the aft end of the flexible seal into a recess defined by respective seal slots of two adjacent gas turbine components; and pushing the flexible seal in an axial direction through the recess until the forward end is disposed within the recess.
Abstract:
An assembly for a turbomachine and a method for assembling a plurality of flow path components are presented. The assembly includes a plurality of flow path components disposed adjacent to one another, each flow path component having a forward surface, an aft surface, a pressure side surface, and a suction side surface. A seal channel is defined by the pressure side surface and the suction side surface of adjacent flow path components. The seal channel has an open forward end proximate to the forward surfaces and at least two rear ends proximate to the aft surfaces. The assembly includes a plurality of seal layers disposed within the seal channel such that one or more seal layers extend from the open forward end to a rear end and one or more other seal layers extend from the open forward end to another rear end.