Abstract:
In one embodiment, a service receives a plurality of process hashes for processes executed by a plurality of devices. The service receives traffic data indicative of traffic between the plurality of devices and a plurality of remote server domains. The service forms a bipartite graph based on the processes hashes and the traffic data. A node of the graph represents a particular process hash or server domain and an edge between nodes in the graph represents network traffic between a process and a server domain. The service identifies, based on the bipartite graph, a subset of the plurality of processes as exhibiting polymorphic malware behavior. The service causes performance of a mitigation action in the network based on the identified subset of processes identified as exhibiting polymorphic malware behavior.
Abstract:
In one embodiment, a service receives data regarding administration traffic in a network associated with a remote administration session in which a control device remotely administers a client device. The service analyzes the received data to determine whether the administration traffic is authorized. The service flags the received data as authorized, based on the analysis of the received data. The service uses the data flagged as authorized to distinguish between benign traffic and malicious traffic in the network.
Abstract:
In an embodiment, a method, performed by processors of a computing device for creating and storing clusters of incident data records based on behavioral characteristic values in the records and origin characteristic values in the records, the method comprising: receiving a plurality of input incident data records comprising sets of attribute values; identifying two or more first incident data records that have a particular behavioral characteristic value; using a malicious incident behavioral data table that maps sets of behavioral characteristic values to identifiers of malicious acts in the network, and a plurality of comparison operations using the malicious incident behavioral data table and the two or more first incident data records, determining whether any of the two or more first incident data records are malicious; and if so, creating a similarity behavioral cluster record that includes the two or more first incident data records.
Abstract:
In one embodiment a method, system and apparatus is described for detecting a malicious network connection, the method system and apparatus including determining, for each connection over a network, if each connection is a persistent connection, if, as a result of the determining, a first connection is determined to be a persistent connection, collecting connection statistics for the first connection, creating a feature vector for the first connection based on the collected statistics, performing outlier detection for all of the feature vector for all connections over a network which have been determined to be persistent connections, and reporting detected outliers. Related methods, systems and apparatus are also described.