Abstract:
Connector systems may include a connector receptacle and connector plug or insert. The connector receptacle may include a tongue. The tongue may be formed using a printed circuit board. Contacts may be plated on top and bottom surfaces of the tongue. Retention features may also be located on top and bottom surfaces of tongue. These retention features may be speed bumps or other features. The connector insert may include a leading edge portion formed of plastic, a conductive shield around the insert behind the leasing edge portion, a plurality of spring contacts attached to an inside of the conductive shield, a top row of contacts; and a bottom row of contacts. Other connector receptacles may include a tongue having side ground contacts. The side ground contacts may engage an inside of a plug shield and have contacting portion to fit in openings in the plug shield.
Abstract:
Connector inserts having retention features with good reliability and holding force. These connector inserts may include ground contacts that provide an insertion portion having a reduced length. These connector inserts may be reliable, have an attractive appearance, and be readily manufactured.
Abstract:
Cables capable of high-speed data transmission and having a low insertion loss. Examples may mitigate the effect of the suckout component of insertion loss by providing cables that eliminated, shift, or reduce the suckout. Examples may eliminate, or at least partially eliminate, the suckout component by providing a continuous return path. Others may shift the frequency of the suckout component to a high frequency where it no longer interferes or significantly attenuates signals being conveyed by the cable. Still others may reduce or control the magnitude of the suckout component.
Abstract:
Connecting structures to mechanically connect to a connector receptacle tongue and a printed circuit board and to electrically connect contacts on the connector receptacle tongue to traces on the printed circuit board. One example may provide an interposer having a housing and a plurality of contacts. The contacts may have a side or tongue connecting portion extending beyond a side of the housing and a bottom or board contacting portion extending beyond a bottom of the housing. The contacts may form a ninety-degree bend. A shield may at least substantially surround a top and the other three sides of the housing.
Abstract:
Connector systems may include a connector receptacle and connector plug or insert. The connector receptacle may include a tongue. A first plurality of contacts may be formed on a top surface of the tongue. A first ground pad may be located on a top surface of tongue, and a shield may be formed around the tongue. The connector insert may include a housing and a conductive shield around the housing behind a leading edge of the connector insert. A front edge of the shield may be folded into an opening at the leading edge. In other examples, the receptacle shield may include one or more fingers. These fingers may contact the connector insert shield to form a ground path. One or more of these fingers may engage openings in the insert shield to provide a retention force between the connector insert and receptacle.
Abstract:
Connector systems may include a connector receptacle and connector plug or insert. The connector receptacle may include a tongue. The tongue may be formed using a printed circuit board. Contacts may be plated on top and bottom surfaces of the tongue. Retention features may also be located on top and bottom surfaces of tongue. These retention features may be speed bumps or other features. The connector insert may include a leading edge portion formed of plastic, a conductive shield around the insert behind the leasing edge portion, a plurality of spring contacts attached to an inside of the conductive shield, a top row of contacts; and a bottom row of contacts. Other connector receptacles may include a tongue having side ground contacts. The side ground contacts may engage an inside of a plug shield and have contacting portion to fit in openings in the plug shield.
Abstract:
Circuits, methods, and apparatus that may reduce the number of connector receptacles that are needed on an electronic device. One example may provide a unified connector and circuitry that may be capable of communicating with more than one interface.
Abstract:
Power plugs that provide reliable functionality, may be reliably manufactured, and have a pleasant appearance. One example may provide a power plug that functions in a reliable manner by providing a ground connection that may maintain its shape over several insertions and removals from a wall socket. A relatively large ground block may act as a heat sink to help reduce plug temperature during operation. Another example may provide a power plug that may be reliably manufactured by forming the ground block as a solid piece to prevent buckling and bending during plug manufacturing that may otherwise result. Another example may provide a power plug that has an attractive appearance by employing a bridge having a flat surface such that after an overmold is formed over the bridge, a face of the plug has a resulting flat, smooth appearance.