Abstract:
A method for enabling a scalable public-key infrastructure (PKI) comprises invoking a process of receiving a message for a device, identifying an association ID for the device, retrieving encrypted association keys stored on the server for communicating with the device, the encrypted association keys encrypted using a wrapping key stored on a Hardware Security Module (HSM). The method further comprises sending the message and the encrypted association keys to the HSM, unwrapping, by the HSM, the encrypted association keys to create unwrapped association keys, cryptographically processing the message to generate a processed message, deleting the unwrapped association keys, sending the processed message to the device, and invoking, concurrently and by a second application, the process.
Abstract:
An energy storage (ES) circuit, including: a plurality of terminals configured to: connect to a pulse load having an input voltage and drawing a low current during a first interval and a high current during a second interval; and connect to a power supply having a source voltage and delivering a source current; an energy storage capacitor connected to the plurality of terminals; and a bidirectional direct current (DC) to DC converter configured to: recharge, during at least a portion of the first interval, the energy storage capacitor using a plurality of charge drawn from the source current; and reduce a drop in the input voltage during the second interval by delivering a difference between the source current and the high current to the pulse load using the plurality of charge stored in the energy storage capacitor.
Abstract:
In an embodiment, triplets of network-enabled FCIs operate to monitor the three phases of a power distribution system. In being network-enabled, the FCIs also operate as nodes of an RF mesh network. In an embodiment, upon the detection of a power failure, the triplet of network FCIs is serially operated so as to extend their networking capabilities by approximately three times.
Abstract:
A node within a wireless mesh network is configured to forward a high-priority message to adjacent nodes in the wireless mesh network by either (i) transmitting the message during successive timeslots to the largest subset of nodes capable of receiving transmissions during each timeslot, or (ii) transmitting the message on each different channel during the timeslot when the largest subset of nodes are capable of receiving transmissions on each of those channels.
Abstract:
A node residing within a wireless mesh network is configured to transmit a state transition message to a downstream node also residing within the wireless mesh network. The state transition message indicates a new operating state for the downstream node. Upon receipt of the state transition message, the downstream node may transition to the new operating state and then transmit an acknowledgement message back to the node that sent the state transition message. Alternatively, the downstream node may transmit the acknowledgement message back to the node that sent the state transition message first, and then transition to the new operating state.
Abstract:
An apparatus mounted beneath or behind a surface and being operable to transmit or receive wireless communication signals for transmitting information from one location to a remote location. The apparatus includes an antenna mounted substantially flush with a surface. The apparatus also includes a communication device and a matching network having a radial transmission line. The communication device is connected to the antenna via the matching network and includes either a transmitter, a receiver or a transceiver.
Abstract:
A wireless mesh network includes heterogeneous types of nodes, including continuously-powered nodes and battery-powered nodes. The battery-powered nodes may reside in a sleeping state most of the time to conserve power. The various nodes in the network may communicate with one another by transmitting and receiving at scheduled times and on scheduled frequencies. The battery-powered nodes may become active during the scheduled transmit and receive times. Network management nodes may facilitate network formation by transmitting information that reflects the scheduled transmit and receive times across the network. Based on this data, the continuously-powered nodes and battery-powered nodes may establish communication links with one another.
Abstract:
A method for enabling a scalable public-key infrastructure (PKI) comprises invoking a process of receiving a message for a device, identifying an association ID for the device, retrieving encrypted association keys stored on the server for communicating with the device, the encrypted association keys encrypted using a wrapping key stored on a Hardware Security Module (HSM). The method further comprises sending the message and the encrypted association keys to the HSM, unwrapping, by the HSM, the encrypted association keys to create unwrapped association keys, cryptographically processing the message to generate a processed message, deleting the unwrapped association keys, sending the processed message to the device, and invoking, concurrently and by a second application, the process.
Abstract:
A node in network is configured to buffer data received from other nodes across multiple channels. The node process a portion of the buffered data associated with a subset of those channels. When the node receives data on that subset of channels that includes a notification, the node then processes a larger portion of the buffered data associated with a larger number of channels. In doing so, the node may identify additional notifications include within data that was buffered but not previously processed. The node may also coordinate with other nodes in order to process buffered data upon identification of a notification.
Abstract:
A wireless mesh network includes a mesh of continuously-powered devices (CPDs) and a mesh of battery-powered devices (BPDs). The BPDs are organized into hop layers based on hopping distance to the mesh of CPDs. The CPDs transmit time beacons to BPDs in a first hop layer during a first receive window associated with the first hop layer. The BPDs in the first hop layer then transmit time beacons to BPDs in a second hop layer during a second receive window. In this manner, the wireless mesh network propagates time values throughout the BPD mesh. Based on these time values, the BPDs power on during short time intervals to exchange data with neighboring BPDs, and then power off for longer time intervals, thereby conserving battery power. The techniques described herein for conserving battery power for BPDs may also be applied to conserve power consumption of CPDs.