Abstract:
Included are a plurality of cylindrical holders having holes into which laser modules are fitted and fixed, respectively; a plate-like base that has a first surface, a second surface opposite to the first surface, and a plurality of through holes through which the laser beams from the plurality of laser modules fixed to the holder pass, the holders abutting against the first surface so as to connect the holes thereof to the through holes of the base, the second surface of the base being arranged with a plurality of lenses corresponding to the through holes; and adhesives applied to outer corners of abutment portions, at which the base and the LD holders abut against each other, for fixing the base and the LD holders to each other.
Abstract:
An optical element driving apparatus includes a holder that holds a plurality of switchable optical elements for focusing light on a recording medium, a resiliently deformable supporting unit that supports the holder, a focusing driving unit that drives the holder in a direction of optical axes of the optical elements, and a tracking driving unit that drives the holder in a tracking direction perpendicular to the direction of the optical axes. The switching of the optical elements is performed by moving the holder by means of the tracking driving unit, so as to select one of the optical elements that focuses light on the recording medium.
Abstract:
An object is to provide a light source unit that focuses a laser beam having different divergence angles in longitudinal direction and lateral direction, without deviating longitudinally and laterally from an incident end-face of an optical fiber, and also that simplifies assembling lenses into a lens barrel. The light source unit herein provided includes a first lens barrel 1 that holds cylindrical lenses 10 and 11, and 12 for forming a parallel-ray laser beam by refracting the laser beam 9 having different divergence angles in longitudinal direction and lateral direction emitted from a laser element 7, a second lens barrel 2 that holds circular lenses 13 and 14 for focusing the parallel-ray laser beam onto the entrance of the optical fiber 3, and a lens holder 15 that holds at least one of the cylindrical lenses and is inserted into the first lens barrel 1 and fixed therein.
Abstract:
An optical element driving apparatus includes a holder that holds a plurality of switchable optical elements for focusing light on a recording medium, a resiliently deformable supporting unit that supports the holder, a focusing driving unit that drives the holder in a direction of optical axes of the optical elements, and a tracking driving unit that drives the holder in a tracking direction perpendicular to the direction of the optical axes. The switching of the optical elements is performed by moving the holder by means of the tracking driving unit, so as to select one of the optical elements that focuses light on the recording medium.
Abstract:
An object lens driving apparatus (100) includes a lens holder (4) that holds an object lens (1) facing a recording medium and is so supported that the lens holder (4) is movable toward and away from the surface of the recording medium. A focusing coil (5) is fixed in the interior of the lens holder (4) so that the focusing coil (5) surrounds an optical axis of the object lens (1). By apply current to the focusing coil (5), a driving force is generated, which moves the lens holder (4) toward and away from the surface of the recording medium. By disposing the focusing coil (5) in the interior of the lens holder (4) so that the focusing coil (5) surrounds the optical axis of the object lens (1), a movable part of the object lens driving apparatus (100) can be reduced in size and weight, so that a high sensitivity can be accomplished.
Abstract:
A lens holder (1) is so supported that the lens holder (1) is movable along a supporting shaft (6) in parallel to an optical axis of the object lens (3), and rotatable about the supporting shaft (6). Magnets (41, 42) are mounted on the lens holder (1). Focusing coils (71, 72) and tracking coils (81, 82) having sides facing the magnets (41, 42) are mounted on a base (5) on which the supporting shaft (6) is planted. Yokes (91, 92) are so provided that the yokes (91, 92) and the magnets (41, 42) respectively sandwich the focusing coils (71, 72) and the tracking coils (81, 82). The yokes (91, 92) have facing portions (91a, 92a) that face respective magnetic poles of the magnets (41, 42) and extending portions (91b, 92b) extending in the directions away from the magnets (41, 42).
Abstract:
An objective lens driving apparatus includes a lens holder 1 that holds an objective lens 2, and a stationary base 9 that supports the lens holder 1 by a support shaft 3 parallel to an optical axis of the objective lens 2. A stationary yoke 11 and the magnet 8 are mounted to the stationary base 9. A focusing coil 4 and the tracking coils 5a and 5b are mounted to the lens holder 1. The interaction between the current in the focusing coil 4 and the magnetic field caused by the magnet 8 generates an electromagnetic force that moves the lens holder 1 along the support shaft 3. The interaction between the current in the tracking coils 5a and 5b and the magnetic field caused by the magnet 8 generates an electromagnetic force that rotates the lens holder 1 about the support shaft 3.
Abstract:
An objective lens driving apparatus includes a lens holder 1 that holds an objective lens 2, and a stationary base 9 that supports the lens holder 1 by a support shaft 3 parallel to an optical axis of the objective lens 2. A stationary yoke 11 and the magnet 8 are mounted to the stationary base 9. A focusing coil 4 and the tracking coils 5a and 5b are mounted to the lens holder 1. The interaction between the current in the focusing coil 4 and the magnetic field caused by the magnet 8 generates an electromagnetic force that moves the lens holder 1 along the support shaft 3. The interaction between the current in the tracking coils 5a and 5b and the magnetic field caused by the magnet 8 generates an electromagnetic force that rotates the lens holder 1 about the support shaft 3.
Abstract:
A thruhole 23 is provided with a movable member so that a light beam irradiated from an LED passes through the thruhole and is received by a photo detector for positional detection whereby the position of an objective lens relative to the light receiving groove of an information recording medium is detected. At the same time, a light beam passing through the thruhole 46 and reflected by the information recording medium is received by a photo detector for inclination detection whereby the inclination angle of the objective lens against the information recording medium is detected.