Abstract:
An audio input interface (122) receives a digital audio signal and identifies an audio bitstream which is optionally decrypted by a decryption unit (123), and decoded by an audio decoding unit (124). An audio digital to analog converter (126) converts the decoded audio bitstream to an analog audio signal which is optionally decrypted by an audio analog decryption unit (127) and output by an audio output interface (128) to an analog wireline device (100). A video input interface (142) receives a digital video signal and identifies a video bitstream which is optionally decrypted by a video digital decryption unit (143), and decoded by a video decoding unit (144). A video digital to analog converter (146) converts the decoded video bitstream to an analog video signal that is optionally decrypted by a video analog decryption unit (147) and output by a video output interface (148) to the analog wireline device (100).
Abstract:
A method of compensating for changes in drop mass of drop emitted by at least one ink jet of an ink jet imaging device is provided. The method comprises identifying a drop placement position on an image receiving member of an ink jet imaging device for at least one ink jet of a print head. The identified drop placement position for the at least one ink jet is compared to a default drop placement position for the at least one ink jet to determine a difference in drop placement position. A drive signal for the at least one ink jet is then adjusted in accordance with the difference in drop placement position.
Abstract:
A method of gambling on a card game, said game being played with one or more conventional 52 card decks, comprising the steps of: players placing wagers on the next drawn card meeting a predetermined card outcome condition; a dealer drawing one card from a shuffled deck or decks; and the dealer paying said wagers, on the basis of the card having a face value that meets said predetermined outcome condition.
Abstract:
A method and apparatus of providing accelerated thermal fatigue testing of an engine component, comprising: (i) impinging one or more torch flames directly on a selected area of the test specimen (i.e. metallic engine cylinder head) to heat such area to a critical test temperature that exceeds the normal maximum loading temperature of the specimen in normal use by about 10-25%, and holding such temperature for a period of 0.01-2.0 minutes; (ii) at the end of the holding period (ie. Water jet water in head jacket, or air in ports) quenching the heated area of the test specimen to a temperature that is about 75% below that of the normal maximum loading temperature and holding such quenching temperature for about 1-3 minutes; and (iii) repeating steps (i) and (ii) until a crack is induced in the test specimen while recording the history of temperature and time involved in such repeated steps.
Abstract:
A testing apparatus for flip chip LEDs includes a transparent substrate, a spacing member, a flexible transparent carrier, and a vacuum generator. The spacing member is configured on a first surface of the transparent substrate. The flexible transparent carrier is removably assembled to the spacing member so that a closed space is formed by the flexible transparent carrier, the spacing member, and the first surface of the transparent substrate. The vacuum generator is connected to the closed space for pumping air out of the closed space, and then a part of the transparent substrate clings to the first surface to form a testing area for loading the flip chip LED.
Abstract:
An audio input interface (122) receives a digital audio signal and identifies an audio bitstream which is optionally decrypted by a decryption unit (123), and decoded by an audio decoding unit (124). An audio digital to analog converter (126) converts the decoded audio bitstream to an analog audio signal which is optionally decrypted by an audio analog decryption unit (127). A video input interface (142) receives a digital video signal and identifies a video bitstream which is optionally decrypted by a video digital decryption unit (143), and decoded by a video decoding unit (144). A video digital to analog converter (146) converts the decoded video bitstream to an analog video signal that is optionally decrypted by a video analog decryption unit (147). An analog transmitter (150) mixes the analog audio signal and analog video signal and transmits an analog output signal to a television (110).
Abstract:
Apparatus which is selectively operable at low frequencies (less than 5,000 Hz and preferably between about 100 Hz to about 1,000 Hz) breaks up jets of high-viscosity fluid into monodisperse droplets. The apparatus includes a housing having a chamber, a piston disposed in the chamber, a magnetic-coil system operably attached to the housing and to the piston, and an oscillator for driving the magnetic-coil system. The housing and the piston define a reservoir for receiving a supply of high-viscosity fluid which is acted upon by oscillating motion of the piston to impart pressure perturbations on the supply of fluid so that the fluid upon discharge from the reservoir separates and breaks up into a plurality of monodisperse droplets. Also disclosed is a method for optimizing the performance of the apparatus to minimize the power required for droplet formation.