Abstract:
A pillar array is printed in positive photoresist using an optical mask (108) having an array of features (310) corresponding to the pillars. The pillars' width/length dimensions are below the exposure wavelength. Superior results can be achieved (less peeling off of the pillars and less overexposure at the center of each pillar) if the mask features (310) are downsized relative to the pillars' target sizes, and the exposure energy is reduced. Negative photoresist (with a dark field mask) can be used, and can provide good results (in terms of pillars peeling-off) if the combined area of the features (410) corresponding to the pillars is smaller than the area between the features (410).
Abstract:
Conventional fabrication of top oxide in an ONO-type memory cell stack usually produces Bird's Beak. Certain materials in the stack such as silicon nitrides are relatively difficult to oxidize. As a result oxidation does not proceed uniformly along the multi-layered height of the ONO-type stack. The present disclosure shows how radical-based fabrication of top-oxide of an ONO stack (i.e. by ISSG method) can help to reduce formation of Bird's Beak. More specifically, it is indicated that short-lived oxidizing agents (e.g., atomic oxygen) are able to better oxidize difficult to oxidize materials such as silicon nitride and the it is indicated that the short-lived oxidizing agents alternatively or additionally do not diffuse deeply through already oxidized layers of the ONO stack such as the lower silicon oxide layer. As a result, a more uniform top oxide dielectric can be fabricated with more uniform breakdown voltages along its height. Additionally, adjacent low and high voltage transistors may benefit from simultaneous formation of their gate dielectrics with use of the radical-based oxidizing method.
Abstract:
Conventional fabrication of sidewall oxide around an ONO-type memory cell stack usually produces Bird's Beak because prior to the fabrication, there is an exposed sidewall of the ONO-type memory cell stack that exposes side parts of a plurality of material layers respectively composed of different materials. Certain materials in the stack such as silicon nitrides are more difficult to oxidize than other materials in the stack such polysilicon. As a result oxidation does not proceed uniformly along the multi-layered height of the sidewall. The present disclosure shows how radical-based fabrication of sidewall dielectric can help to reduce the Bird's Beak formation. More specifically, it is indicated that short-lived oxidizing agents (e.g., atomic oxygen) are able to better oxidize difficult to oxidize materials such as silicon nitride and the it is indicated that the short-lived oxidizing agents alternatively or additionally do not diffuse as deeply through already oxidized layers of the sidewall such as silicon oxide layers. As a result, a more uniform sidewall dielectric can be fabricated with more uniform breakdown voltages along it height.
Abstract:
A novel preset necktie comprises an outer tie, and inner tie, a zipper, a zipper slider of unique configuration, and a support body. The outer and the inner ties are both separate individual bodies with the upper portion of the inner tie being connected to form a loop and a zipper being disposed to the inner side of the lower portion thereof to form into the tie loop. With the inner tie having been threaded through the support body and the pull tab of the specially designed slider secured to the inner side of said slider, the size of the tie loop can be adjusted by pushing or pulling said support body. A pressing spring plate is provided on the inner side of the slider so as to keep the shape of the tie loop fixed. The upper portion of the outer tie is secured to the support body by means of a rivet and preset into a regular knot such that the user does not have to set the knot each time when wearing then necktie.