Abstract:
The present disclosure relates to a method for operating a crane with a traversable undercarriage, an uppercarriage rotatably mounted on the same with luffing main boom and derrick boom arranged thereon, wherein an auxiliary crane with telescopic boom as derrick ballast is connected with the crane and via the telescopic boom of the auxiliary crane the derrick ballast radius is adjusted. According to the present disclosure, a suspended ballast is lifted in addition to the auxiliary crane provided as derrick ballast for erecting the main boom, wherein first the auxiliary crane is lifted, before the suspended ballast is lifted, when necessary. The present disclosure also relates to a crane for carrying out the method.
Abstract:
A lift apparatus cooperable with a log splitter for lifting log sections onto and positioning the log sections on the log splitter for splitting, the lifting apparatus having a frame member removably secured to the frame of the log splitter and supported by the underlying substrate, the frame defining an upwardly extending pedestal having a vertical post member secured thereto having a transverse lifting boom secured to the upper end of the vertical member, the lifting boom supporting a cable spool and electric motor, the lifting boom articulating in the vertical frame in response to a hydraulic control, the lifting boom rotatable about said support post, the cable having a lifting tong secured to its end for engaging log sections and lifting onto said log splitter, or for engaging log sections a distance from the log splitter and dragging them to the log splitter for lifting.
Abstract:
A mast-raising mechanism for raising a mast of a mobile lift crane to an operating position includes a hydraulic cylinder extendable to raise the mast. The hydraulic cylinder includes a first end pivotally coupled to a rotating bed of the crane and a second end spaced apart from the first end. A first arm includes a first end pivotably coupled to the second end of the hydraulic cylinder. The hydraulic cylinder extends to press the first end against a bearing surface on the mast. The first arm also includes a second end spaced apart from the first end. A second arm includes a first end proximate the second end of the first arm and a second end spaced apart from the first end. The second end of the second arm is pivotably connected to the rotating bed. A biasing mechanism urges the first arm towards the second arm.
Abstract:
The invention relates to a crane having an undercarriage with a swivel connection and having a superstructure rotatably supported thereon via the swivel connection and comprising at least one boom system arranged at said superstructure and luffable about a luffing axis or a self-climbing tower slewing crane rotatably supported thereon via the swivel connection. In accordance with the invention, the undercarriage has a pot as a central component which, on the one hand, receives the swivel connection. Furthermore, however, the pivotable supports can also be pivotally connected to it. Side members are present at mutually oppositely disposed sides and at least one traveling gear can respectively connected to them with at least one degree of freedom.
Abstract:
The present invention pertains to a nut to be used as part of a fastener to be used in multiple ways in various industries or methods. The nut has a drive mechanism and stud extending from the drive mechanism with a threaded bore. In addition the nut can be specifically used as a method and as part of special fastener that can be used to join cut, hard-wood members, other naturally occurring manufactured mat members or synthetically man made members, referred to as “timber(s)” or “laminated”, in forming a mat used for heavy construction equipment to run on over ground which is not stable. These mats are commonly referred to as “Crane Mats” or “Laminated Mats” in the construction, mining, pipeline, and oil and gas industries among others.
Abstract:
A cylinder retraction system causes a crawler side frame hoisting hydraulic cylinder, swingably suspended on a ventral surface side of a lower boom, to swing between a retracted attitude, in which the hydraulic cylinder is set along a ventral surface of the lower boom, and an operating attitude in which the hydraulic cylinder is oriented along a vertical direction. As the rod of the hydraulic cylinder, currently having the operating attitude, is contracted by a predetermined extent, the rod front end of the hydraulic cylinder is guided by the guiding portion until the hydraulic cylinder takes on the retracted attitude. As the hydraulic cylinder, currently having the retracted attitude, is extended by a predetermined extent, engagement between the rod front end of the hydraulic cylinder and the guiding portion is released so as to allow the hydraulic cylinder to take on the operating attitude.
Abstract:
[PROBLEMS] To provide a rotating frame of an upper rotating body such that total productivity can be improved, the cost can be reduced, and model change can be facilitated.[MEANS FOR SOLVING PROBLEMS] Many models having different lifting capacities are divided into a plurality of classes each including a plurality of models. A rotating frame 17 is determined on the basis of the model having the largest lifting capacity in each class. An upper rotating body is constructed using the rotating frame 17 as the base. In addition, each of winches 5 to 7 is mounted on the rotating frame by using a mounting structure standardized in the same class. On the other hand, left and right deck frames 18 and 19 are divided into sections on which different pieces of equipment are mounted, and the sections are separately attached to the rotating frame 17.
Abstract:
A large mobile crane including an undercarriage. The undercarriage includes a middle section between tracks, wherein a distance between the tracks can be increased or decreased by the insertion or removal of expansion parts. The two tracks are connected on opposite sides of the undercarriage to permit movement of the large mobile crane. The undercarriage also includes a drive unit, a superstructure, one or more control stations, at least two main booms, at least one derrick boom, and at least two lifting devices and counterweights. The counterweights are either arranged separately of or mounted on the undercarriage. The large mobile crane further includes a circular track, and support rollers attached to the superstructure, wherein the support rollers ride on the circular track, and wherein the circular track is an integral part of the expansion parts.
Abstract:
The invention relates to a traction rod (1) for bracing a crane jib, comprising a metallic tubular body (2) and coupling elements (3) which are connected to both ends thereof for an articulated connection of the traction rods among each other by means of bolts (5). According to the invention, the tubular body and the coupling elements consist of a one-piece tube portion, wherein the coupling elements are designed in each case as a thicker zone of the wall of the ends of the tubular body and are dimensioned in such a manner that a weakening of the cross section of the nominal wall thickness of the coupling elements, which has to be considered for calculating the load capacity of the tubular body, is prevented in the region of the bolt connection and the transition regions (7) from the respective thicker zones of the wall in the direction of the tubular body have a transition free of starting points for increasing fatigue strength.
Abstract:
A method and a device for hoisting an item at sea with a hoisting device comprises moving the item between a plurality of different height levels. In addition, the method comprises alternately supporting the load of the item with a first hoisting rope and a second hoisting rope while moving the item between the plurality of different height levels. Further, the method comprises arranging the first hoisting rope and the second hoisting rope to extend in parallel along at least part of the distance between the item and the hoisting device. Still further, the method comprises releasably connecting the first hoisting rope to the second hoisting rope. Moreover, the method comprises suspending the second hoisting rope from a hanger when the second hoisting rope is supporting the load of the item. The method also comprises connecting the hanger to an arm of the hoisting device.