Abstract:
A flywheel is provided in combination with a hybrid machine, wherein said flywheel comprises, in a radial direction, from inward to outward, an inner turbine, an intermediate compressor, and an outer array of magnets. The turbine cooperates with said hybrid machine to spin faster when said machine decelerates, and slower when said machine accelerates. An inner turbine drives both said intermediate compressor and said hybrid machine. The outer array of magnets is driven by said hybrid machine to accelerate the flywheel to accelerate the flywheel during braking of said hybrid machine. Said hybrid machine communicates with said flywheel to house it and render energy from it, in a hybrid manner such that energy is stored in a pressure or electrical storage mode, or both pressure and electrical storage mode, to effect a regenerative mode that attains low fuel consumption.
Abstract:
An oscillator typically includes a rotatable drive shaft, at least two pivot members which rotate with the drive shaft, at least one oscillating member which is pivotable back and forth in an oscillating manner and at least one rod mounted on the at least one oscillating member which is movable in response to rotational and pivotal movement of the at least two pivot members so as to cause the oscillating member to pivot back and forth in an oscillating manner. At least one rotatable drive wheel may drive rotatable movement of the drive shaft. A drive mechanism may be used to drive rotation of the at least one drive wheel. At least one generating magnet may be mounted on the oscillating member and movable adjacent an electrically conductive coil for producing an electric current therein.
Abstract:
A system for providing regenerative power for an aircraft to sustain flight includes multiple energy cells disposed within the aircraft, the energy cells being configured to supply power to a propulsion motor and electronics of the aircraft, a fan generator harnessing propeller blast created by an aircraft propeller and converting kinetic energy of the propeller blast into electrical energy, a charger receiving the electrical energy generated by the fan generator and using the electrical energy to recharge one or more of the energy cells, and a power transfer switch selectively connecting one of the energy cells to the propulsion motor and electronics of the aircraft, such that the energy cells are rotated one at a time to power the propulsion motor and electronics. During recharging, the one or more of the energy cells are disconnected by the power transfer switch.
Abstract:
A magnetic apparatus and related method and energy product-by-process to motivate linear or rotational motion, comprising: at least one magnet ring tier comprising a ring of a plurality of permanent magnets; a central core comprising a permanent magnet projectile movement channel, an axis of the channel aligned in a direction normal to a geometric plane defined by the magnet ring, and running through a geometric center of the magnet ring; and each of the permanent magnets mounted in the ring at a mount angle thereof, with the components of their polar alignments parallel to the central core all oriented in the same direction; wherein: if the polar alignment of a permanent magnet projectile was introduced with a particular duality-dependent orientation into the permanent magnet projectile movement channel, the magnetic forces between the ring magnets and the projectile would be capable of motivating the permanent magnet projectile relative to the channel.
Abstract:
A magnetic levitation power device is revealed. The magnetic levitation power device includes at least two sets of power devices, a motor, and a power generator. The magnetic levitation power device features on the power devices each of which consists of a first seat, a second seat and a transmission set. A first sleeve is set on the first seat and a second sleeve is arranged at the second seat. The transmission set is composed of a shaft, a large gear and a small gear. Each of two ends of the shaft are disposed with two magnetic bodies respectively and are mounted in a sleeve. The magnetic bodies are arranged with like poles repel each other so that the transmission set is suspended and friction coefficient of the shaft is reduced. Therefore high speed transmission is achieved by low power to get high power.
Abstract:
Society today is heavily dependent on electricity for everyday life. There are many different types of electrical generators. The present invention uses the concept of a conventional swing to produce electricity. On a conventional swing, humans are the prime movers, keeping the swing in motion by body movements and pumping the legs. The present invention produces rotation in a generator by operating a prime mover that mimics these human movements on a conventional swing. In the present invention, a mechanized prime Mover, in human form, takes the place of a persons body movements to keep the swing in motion.
Abstract:
A portable power supply system powers electrical devices in remote areas where electrical connection to an existing power grid is not possible. The system includes a battery positioned in an interior space of a housing. An inverter is coupled to the housing and electrically coupled to the battery. A motor is positioned in the interior space and electrically coupled to the inverter wherein the motor is powered by the inverter. An alternator is positioned in the interior space and turned by the motor. The alternator is electrically coupled to the battery providing a charging current to the battery. An outlet is electrically coupled to the inverter to provide electrical power to an extrinsic device plugged into the outlet.
Abstract:
An oscillator typically includes several rotatable drive magnets and pivotable oscillating arms having respective follower magnets so that the drive magnets drive movement of the follower magnets to pivot the arms back and forth in an oscillating manner. A generating magnet or electrically conductive member may be mounted on each oscillating arm for producing an electric current in the electrically conductive member. Repelling magnets may be mounted on the oscillating arms with respective repelling magnets positioned to repel the first repelling magnet to limit pivotal travel of the oscillating arm.
Abstract:
Briefly, the invention involves a system and method for generating electrical power. The system includes an electromagnet positioned with one pole directed toward a like pole of a permanent magnet. The permanent magnet is preferably mounted for oscillating movement toward the pole of the electromagnet. A control system for the electromagnet is provided to supply direct current (DC) power in the form of square wave pulses which coincide with the position of the permanent magnet. Power is collected upon the collapse of the magnetic field within the electromagnetic magnet. In some embodiments the present device is supplied in the form of a reciprocating engine which provides rotary motion in addition to the electrical power generated.
Abstract:
An energy harvesting device includes at least one first magnet configured to rotate along a first circular path in a first plane. The energy harvesting device includes at least one piezo-electric cantilever spaced apart from the first plane, the at least one piezo-electric cantilever being configured to bend in a direction substantially perpendicular to the first plane. The energy harvesting device also includes at least one second magnet coupled to the at least one cantilever and configured to overlap the at least one first magnet.