Abstract:
A system for disabling an oximetric device when radiation-carrying channels are exposed to excess ambient radiation is disclosed. It includes a transmitter channel adjacent the sample to be measured, means for isolating the channel from the sample so that it does not carry radiation reflected from or transmitted through the sample, a detector for receiving the transmitted signal, if any, and means for disabling the output in response to the transmitted signal. Preferably, the transmitter channel runs parallel to other transmitter channels in the device, and is isolated from undue ambient light. The system preferably includes means for determining when the second transmitted signal exceeds background noise and the output is disabled when the second transmitted signal exceeds background noise. In general, the sample is a fluid, usually blood, passing through a cuvette adjacent the fiber-optic channels, the cuvette defining an area of radiation absorption adjacent the transmitter channel so that the transmitter does not carry reflected or transmitted radiation from the sample. Also disclosed is a fiber-optic sensor for measuring components of a composition by detecting transmitted or reflected, usually reflected, radiation including such a system, and the cuvette therefore. Finally, a method of disabling the output of an oximetric device when the fiber-optic channels are exposed to undue ambient radiation is disclosed.
Abstract:
The present invention provides systems and methods for attenuating the effect of ambient light on optical sensors and for measuring and compensating quantitatively for the ambient light.
Abstract:
The present invention provides systems and methods for attenuating the effect of ambient light on optical sensors and for measuring and compensating quantitatively for the ambient light.
Abstract:
An improved pulse oximeter apparatus and method for the measurement of oxygen saturation in the blood, which is faster and more accurate than conventional pulse oximeters. Improved speed and accuracy is attained by elimination of normalization and feedback circuitry and the use of analog to digital converting devices having a wide dynamic range along with a sophisticated computer analysis. The instant invention eliminates inaccuricies resulting from channel matching errors, and detects and eliminates aberrant input data.
Abstract:
An improved pulse oximeter for the measurement of oxygen saturation in the blood, which is faster and more accurate than conventional pulse oximeters.Improved speed and accuracy is attained by elimination of normalization and feedback circuitry and the use of analog to digital converting devices having a wide dynamic range along with a sophisticated computer analysis. The instant invention eliminates inaccuricies resulting from channel matching errors, and detects and eliminates aberrant input data.
Abstract:
A system for disabling an oximetric device when radiation-carrying channels are exposed to excess ambient radiation is disclosed. It includes a transmitter channel adjacent the sample to be measured, means for isolating the channel from the sample so that it does not carry radiation reflected from or transmitted through the sample, a detector for receiving the transmitted signal, if any, and means for disabling the output in response to the transmitted signal. Preferably, the transmitter channel runs parallel to other transmitter channels in the device, and is isolated from undue ambient light. The system preferably includes means for determining when the second transmitted signal exceeds background noise and the output is disabled when the second transmitted signal exceeds background noise. In general, the sample is a fluid, usually blood, passing through a cuvette adjacent the fiber-optic channels, the cuvette defining an area of radiation absorption adjacent the transmitter channel so that the transmitter does not carry reflected or transmitted radiation from the sample. Also disclosed is a fiber-optic sensor for measuring components of a composition by detecting transmitted or reflected, usually reflected, radiation including such a system, and the cuvette therefor. Finally, a method of disabling the output of an oximetric device when the fiber-optic channels are exposed to undue ambient radiation is disclosed.
Abstract:
A system for disabling an oximetric device when radiation-carrying channels are exposed to excess ambient radiation is disclosed. It includes a transmitter channel adjacent the sample to be measured, means for isolating the channel from the sample so that it does not carry radiation reflected from or transmitted through the sample, a detector for receiving the transmitted signal, if any, and means for disabling the output in response to the transmitted signal. Preferably, the transmitter channel runs parallel to other transmitter channels in the device, and is isolated from undue ambient light. The system preferably includes means for determining when the second transmitted signal exceeds background noise and the output is disabled when the second transmitted signal exceeds background noise. In general, the sample is a fluid, usually blood, passing through a cuvette adjacent the fiber-optic channels, the cuvette defining an area of radiation absorption adjacent the transmitter channel so that the transmitter does not carry reflected or transmitted radiation from the sample. Also disclosed is a fiber-optic sensor for measuring components of a composition by detecting transmitted or reflected, usually reflected, radiation including such a system, and the cuvette therefore. Finally, a method of disabling the output of an oximetric device when the fiber-optic channels are exposed to undue ambient radiation is disclosed.
Abstract:
An improved pulse oximeter for the measurement of oxygen saturation in the blood, which is faster and more accurate than conventional pulse oximeter. Improved speed and accuracy is attained by elimination of normalization and feedback circuitry and the use of analog to digital converting devices having a wide dynamic range along with a sophisticated computer analysis. The instant invention eliminates inaccurcies resulting from channel matching errors, and detects and eliminates aberrant input data.