Abstract:
A filtering apparatus for a fluid intake of a nuclear power generation facility comprise primary and secondary frames. The primary frame defines an enclosed volume having least one inlet opening, and at least one outlet opening in fluid communication with the fluid intake. A primary filter is supported on the primary frame and covers the inlet opening such that fluid passes into the enclosed volume through the primary filter. The secondary frame is located within the volume enclosed by the primary frame. A secondary filter is supported on the secondary frame and defines an enclosed flow passage in communication with the outlet opening, such that fluid passes into the at least one outlet opening through the secondary filter and the enclosed flow passage.
Abstract:
A filtration method for filtration of nucleated cells that includes providing a filter containing at least one of a metal and a metal oxide as a major component thereof and having a plurality of through-holes therein, and passing a liquid containing the nucleated cells through the filter. The diameter of an inscribed circle of each of the plurality of through-holes is smaller than the size of the nuclei of the nucleated cells, and the inscribed circle of each of the plurality of through-holes touches all sides defining an opening of the through-hole.
Abstract:
A filter element is provided with a support frame provided with a first end disk section and a second end disk section. A folded filter medium is connected to the support frame and arranged between the first end disk section and the second end disk section of the support frame. The first end disk section or the second end disk section has a face facing away from the filter medium. The support frame is provided with a fluid guiding channel that guides, when a fluid flow passes through the filter medium, the fluid along the face facing away from the filter medium. A filter assembly with such a filter element and a filter receptacle in which the filter element is exchangeably arranged is provided.
Abstract:
A screen has a plurality of rods arranged longitudinally around a central axis. The rods have first and second edges (e.g., inner and outer edges). Each of the first edges defines a profile that varies in lateral distances from the central axis along a longitudinal length of the rod. For example, the first edges can have an undulating profile of crests and troughs. With the plurality of rods disposed around the central axis, the profile produces a varied surface on the screen when a plurality of wraps from one or more wires is disposed laterally around rods. These one or more wires attach to the first edges of the rods and form a plurality of gaps.
Abstract:
A filter unit includes a substantially cylindrical body portion having a proximal end and a distal end. First and second recessed engagement surfaces traverse at least part of the body portion. The first and second engagement surfaces include a first segment that extends substantially parallel with the longitudinal extent of the body portion. A second segment extends at an angle between 50 degrees and 60 degrees from the direction of the first segment. A third segment extends substantially orthogonal to the first segment. A laterally extending key member is disposed on the body portion between the first recessed engagement surface and the second recessed engagement surface. An engagement protrusion extends from the proximal end and has a sidewall with a water inlet and a concave engagement wall with a water outlet. The engagement wall includes a first portion that angles inward to the water outlet at a first angle. A second portion angles inward to the water outlet at a second angle different than the first angle. A periphery of the engagement wall at the first portion includes a first radius of curvature. The periphery of the engagement wall at the second portion includes a second radius of curvature that is larger than the first radius of curvature. First and second seals are disposed about the sidewall. The water inlet is disposed between the first and second seals.
Abstract:
A fluid filtering apparatus and method may include keyed components to ensure that a correct filter element is being installed into a filter base. Keyed arrangements may occur between a filter element and a filter housing, a filter and a filter base, and a filter base and a filter housing. A locking arrangement may be provided to prevent undesired loosening of a filter relative to a filter base. The filter base may include a torsion lock insert that engages lock detents of a filter to prevent the undesired loosening. An adaptor may be provided to provide the lock detents that interact with a torsion lock insert.
Abstract:
A fluid filtering apparatus and method may include keyed components to ensure that a correct filter element is being installed into a filter base, and to automatically actuate a fluid valve as the filter element is rotated into place on the base. Tool-less replacement of the element is provided. An embodiment of the element may include inner and outer substantially tubular-shaped media packs disposed about an axis, with one end of each of the inner and outer media packs being attached to an end cap of the element in a manner defining a fluid flow space between the inner and outer media packs for receiving a flow of fluid directed in parallel through the inner and outer media packs. A housing of the filter apparatus may include a flow tube configured to fit into the space between the inner and outer media packs.
Abstract:
A filter of depth layer type comprises a generally cylindrical filter body formed by laminating filter elements each in the form of a thin sheet of a filtering material having a central hole, and these central holes provide a conduit extending in the axial direction through the filter body. The filter body has a density distribution in which the density is lowest at the outer peripheral area sewing as an inlet for a fluid to be filtered and becomes progressively higher toward the conduit to serving as an outlet for the fluid to be filtered.
Abstract:
An apparatus for filtering solid and/or non-dissolved contaminants entrained in flowing water, the apparatus comprising an inlet for the water containing the entrained solid or non-dissolved contaminants to flow into a filtering chamber; a first outlet for expelling the unfiltered water from the filtering chamber; the filtering chamber further comprising: a curved or corner portion in the filtering chamber providing at least a part of a flow path of water from the inlet to the first outlet such that flow of the water along the curved or corner portion changes the direction of flow of the water; and a filtering screen for filtration of solid and/or non-dissolved contaminants from the influent water thereby allowing passage of filtered water out of the filtering chamber.
Abstract:
A suction filter which filters fuel inside a fuel tank of a vehicle to let a fuel pump draw filtered fuel into an inlet port includes a filter element disposed inside the fuel tank and filtering stored fuel stored in the fuel tank by allowing the stored fuel to pass through to an inner space, and a partition wall element disposed in a posture with which to divide the inner space to a first space where filtered fuel filtered at the filter element flows in and a second space where the inlet port into which the filtered fuel is drawn opens, and allowing the filtered fuel in the first space to pass through to the second space. The partition wall element is provided in a form of a partition film dividing the inner space to the first space on an upper side and the second space on a lower side.