摘要:
This invention provides a new mechanism for “Hot-Tracing” using a novel placeholder mechanism and binary rewriting techniques, which leverages existing compiler flags in order to enable light-weight and highly flexible dynamic instrumentation. Broadly, I-Probe can be divided in 2 distinct workflows—1. Pre-processing (ColdPatch), and 2. Hot Tracing. The first phase is a pre-processing mechanism to prepare the binary for phase 2. The second phase is the actual hot-tracing mechanism, which allows users to dynamically instrument functions (more specifically symbols) of their choice.
摘要:
A system for automatically instrumenting and tracing an application program and related software components achieves a correlated tracing of the program execution. It includes tracing of endpoints that are the set of functions in the program execution path that the developers are interested. The tracing endpoints and related events become the total set of functions to be traced in the program (called instrument points). This invention automatically analyzes the program and generates such instrumentation points to enable correlated tracing. The generated set of instrumentation points addresses common questions that developers ask when they use monitoring tools.
摘要:
A method includes generating a normal trace in a training stage for the monitored software systems and a monitored trace in the deployment stage for anomaly detection, applying resource transfer functions to traces to convert them to resource features, and system call categorization to traces to convert them to program behavior features, performing anomaly detection in a global scope using the derived resource features and program behavior features, in case the system finds no anomaly, generating no anomaly report, in case the anomaly is found, including the result in an anomaly report; and performing conditional anomaly detection.
摘要:
This invention provides a new mechanism for “Hot-Tracing” using a novel placeholder mechanism and binary rewriting techniques, which leverages existing compiler flags in order to enable light-weight and highly flexible dynamic instrumentation. Broadly, I-Probe can be divided in 2 distinct workflows—1. Pre-processing (ColdPatch), and 2. Hot Tracing. The first phase is a pre-processing mechanism to prepare the binary for phase 2. The second phase is the actual hot-tracing mechanism, which allows users to dynamically instrument functions (more specifically symbols) of their choice.
摘要:
A method includes generating a normal trace in a training stage for the monitored software systems and a monitored trace in the deployment stage for anomaly detection, applying resource transfer functions to traces to convert them to resource features, and system call categorization to traces to convert them to program behavior features, performing anomaly detection in a global scope using the derived resource features and program behavior features, in case the system finds no anomaly, generating no anomaly report, in case the anomaly is found, including the result in an anomaly report; and performing conditional anomaly detection.
摘要:
A system and method for analysis of complex systems which includes determining model parameters based on time series data, further including profiling a plurality of types of data properties to discover complex data properties and dependencies; classifying the data dependencies into predetermined categories for analysis; and generating a plurality of models based on the discovered properties and dependencies. The system and method may analyze, using a processor, the generated models based on a fitness score determined for each model to generate a status report for each model; integrate the status reports for each model to determine an anomaly score for the generated models; and generate an alarm when the anomaly score exceeds a predefined threshold.
摘要:
Systems and methods for anomaly detection in complex physical systems, including extracting features representative of a temporal evolution of the complex physical system, and analyzing the extracted features by deriving vector trajectories using sliding window segmentation of time series, applying a linear test to determine whether the vector trajectories are linear, and performing subspace decomposition on the vector trajectory based on the linear test. A system evolution model is generated from an ensemble of models, and a fitness score is determined by analyzing different data properties of the system based on specific data dependency relationships. An alarm is generated if the fitness score exceeds a predetermined number of threshold violations for the different data properties.
摘要:
Methods and systems for embedding a network in a latent space include generating a representation of an input network graph in the latent space using an autoencoder model and generating a representation of a set of noise samples in the latent space using a generator model. A discriminator model discriminates between the representation of the input network graph and the representation of the set of noise samples. The autoencoder model, the generator model, and the discriminator model are jointly trained by minimizing a joint loss function that includes parameters for each model. A final representation of the input network graph is generated using the trained autoencoder model.
摘要:
A method and system are provided for heterogeneous log analysis. The method includes performing hierarchical log clustering on heterogeneous logs to generate a log cluster hierarchy for the heterogeneous logs. The method further includes performing, by a log pattern recognizer device having a processor, log pattern recognition on the log cluster hierarchy to generate log pattern representations. The method also includes performing log field analysis on the log pattern representations to generate log field statistics. The method additionally includes performing log indexing on the log pattern representations to generate log indexes.
摘要:
Methods and systems for detecting anomalous events include detecting anomalous events in monitored system data. An event correlation graph is generated by determining a tendency for a first process to access a system target, including an innate tendency of the first process to access the system target, an influence of previous events from the first process, and an influence of processes other than the first process. Kill chains are generated from the event correlation graph that characterize events in an attack path over time. A security management action is performed based on the kill chains.