MACHINE LEARNING USING SIMULATED CARDIOGRAMS

    公开(公告)号:US20210321960A1

    公开(公告)日:2021-10-21

    申请号:US17110101

    申请日:2020-12-02

    Abstract: A system is provided for generating a classifier for classifying electromagnetic data (e.g., ECG) derived from an electromagnetic source (e.g., heart). The system accesses a computational model of the electromagnetic source. The computational model models the electromagnetic output of the electromagnetic source over time based on a source configuration (e.g., rotor location) of the electromagnetic source. The system generates, for each different source configuration (e.g., different rotor locations), a modeled electromagnetic output (e.g., ECG) of the electromagnetic source for that source configuration. For each modeled electromagnetic output, the system derives the electromagnetic data for the modeled electromagnetic output and generates a label (e.g., rotor location) for the derived electromagnetic data from the source configuration for the modeled electromagnetic data. The system trains a classifier with the derived electromagnetic data and the labels as training data. The classifier can then be used to classify the electromagnetic output collected from patients.

    GENERATING APPROXIMATIONS OF CARDIOGRAMS FROM DIFFERENT SOURCE CONFIGURATIONS

    公开(公告)号:US20190333642A1

    公开(公告)日:2019-10-31

    申请号:US16043011

    申请日:2018-07-23

    Abstract: Systems are provided for generating data representing electromagnetic states of a heart for medical, scientific, research, and/or engineering purposes. The systems generate the data based on source configurations such as dimensions of, and scar or fibrosis or pro-arrhythmic substrate location within, a heart and a computational model of the electromagnetic output of the heart. The systems may dynamically generate the source configurations to provide representative source configurations that may be found in a population. For each source configuration of the electromagnetic source, the systems run a simulation of the functioning of the heart to generate modeled electromagnetic output (e.g., an electromagnetic mesh for each simulation step with a voltage at each point of the electromagnetic mesh) for that source configuration. The systems may generate a cardiogram for each source configuration from the modeled electromagnetic output of that source configuration for use in predicting the source location of an arrhythmia.

    DISPLAY OF AN ELECTROMAGNETIC SOURCEBASED ON A PATIENT-SPECIFIC MODEL

    公开(公告)号:US20190328336A1

    公开(公告)日:2019-10-31

    申请号:US16043050

    申请日:2018-07-23

    Abstract: Systems are provided for generating data representing electromagnetic states of a heart for medical, scientific, research, and/or engineering purposes. The systems generate the data based on source configurations such as dimensions of, and scar or fibrosis or pro-arrhythmic substrate location within, a heart and a computational model of the electromagnetic output of the heart. The systems may dynamically generate the source configurations to provide representative source configurations that may be found in a population. For each source configuration of the electromagnetic source, the systems run a simulation of the functioning of the heart to generate modeled electromagnetic output (e.g., an electromagnetic mesh for each simulation step with a voltage at each point of the electromagnetic mesh) for that source configuration. The systems may generate a cardiogram for each source configuration from the modeled electromagnetic output of that source configuration for use in predicting the source location of an arrhythmia.

    MACHINE LEARNING USING SIMULATED CARDIOGRAMS
    27.
    发明申请

    公开(公告)号:US20190328257A1

    公开(公告)日:2019-10-31

    申请号:US16162695

    申请日:2018-10-17

    Abstract: A system is provided for generating a classifier for classifying electromagnetic data (e.g., ECG) derived from an electromagnetic source (e.g., heart). The system accesses a computational model of the electromagnetic source. The computational model models the electromagnetic output of the electromagnetic source over time based on a source configuration (e.g., rotor location) of the electromagnetic source. The system generates, for each different source configuration (e.g., different rotor locations), a modeled electromagnetic output (e.g., ECG) of the electromagnetic source for that source configuration. For each modeled electromagnetic output, the system derives the electromagnetic data for the modeled electromagnetic output and generates a label (e.g., rotor location) for the derived electromagnetic data from the source configuration for the modeled electromagnetic data. The system trains a classifier with the derived electromagnetic data and the labels as training data. The classifier can then be used to classify the electromagnetic output collected from patients.

    HEART GRAPHIC DISPLAY SYSTEM
    28.
    发明公开

    公开(公告)号:US20230225655A1

    公开(公告)日:2023-07-20

    申请号:US18123922

    申请日:2023-03-20

    Abstract: A system is provided for displaying heart graphic information relating to sources and source locations of a heart disorder to assist in evaluation of the heart disorder. A heart graphic display system provides an intra-cardiogram similarity (“ICS”) graphic and a source location (“SL”) graphic. The ICS graphic includes a grid with the x-axis and y-axis representing patient cycles of a patient cardiogram with the intersections of the patient cycle identifiers indicating similarity between the patient cycles. The SL graphic provides a representation of a heart with source locations indicated. The source locations are identified based on similarity of a patient cycle to library cycles of a library cardiogram of a library of cardiograms.

    IDENTIFY ABLATION PATTERN FOR USE IN AN ABLATION

    公开(公告)号:US20220192749A1

    公开(公告)日:2022-06-23

    申请号:US17590119

    申请日:2022-02-01

    Abstract: Systems are provided for generating data representing electromagnetic states of a heart for medical, scientific, research, and/or engineering purposes. The systems generate the data based on source configurations such as dimensions of, and scar or fibrosis or pro-arrhythmic substrate location within, a heart and a computational model of the electromagnetic output of the heart. The systems may dynamically generate the source configurations to provide representative source configurations that may be found in a population. For each source configuration of the electromagnetic source, the systems run a simulation of the functioning of the heart to generate modeled electromagnetic output (e.g., an electromagnetic mesh for each simulation step with a voltage at each point of the electromagnetic mesh) for that source configuration. The systems may generate a cardiogram for each source configuration from the modeled electromagnetic output of that source configuration for use in predicting the source location of an arrhythmia.

Patent Agency Ranking