Abstract:
A dual input single output (DISO) regulator, includes a comparator configured to receive a first and second power supply signal and to provide a first compared signal; a first switch configured to couple the first power supply source to an intermediate node, and a second switch configured to couple the second power supply source to the intermediate node; a control logic circuit, coupled to the first comparator, to the first switch, and to the second switch, and configured to receive the compared signal to control the first and the second switch in a first and second operating condition based on the compared signal. The intermediate node being biased by an intermediate power supply signal correlated to the first or second power supply signal. The DISO regulator includes a low-dropout regulator, configured to provide a regulated power supply signal based on the intermediate power supply signal.
Abstract:
A control circuit operates to control a switching stage of an electronic converter. The control circuit includes: first terminals providing drive signals to electronic switches of the switching stage; a second terminal receiving from a feedback circuit a first feedback signal proportional to a converter output voltage; and a third terminal configured to receive from a current sensor a second feedback signal proportional to an inductor current. A driver circuit provides the drive signals as a function of a PWM signal generated by a generator circuit as a function of the first and second feedback signals, a reference voltage and a slope compensation signal. A mode selection signal is generated as a function of a comparison between the input voltage and the output voltage. A feed-forward compensation circuit is configured to source and/or sink a compensation current as a function of a variation in the mode selection signal.
Abstract:
In a control circuit for a switching stage of an electronic converter, a phase detector generates a drive signal in response to a phase difference between first and second clock signals. The first and second clock signals are generated by first and second current-controlled oscillators, respectively. An operational transconductance amplifier generates first and second control currents in response to a difference between a reference and a feedback of the electronic converter, with the first and second currents applied to control the first and second current-controlled oscillators. In response to a switching clock having a first state, a switching circuit applies first and second bias currents to the control inputs of the first and second current-controlled oscillators, respectively. Conversely, in response to the switching clock having a second state, the switching circuit applies the second and first bias currents to the control inputs of the first and second current-controlled oscillators, respectively.
Abstract:
First and second FETs of a half-bridge are series connected between first and second terminals and are gate driven, respectively, by first and second drivers. An inductance is connected to the intermediate node of the half-bridge. Power supply for the second driver circuit is a supply voltage generated by a voltage regulator as a function of the voltage between the first and the second terminal. Power supply for the first driver circuit is a supply voltage generated by a bootstrap capacitor having a first terminal connected via a first switch to receive the supply voltage output from the voltage regulator and a second terminal connected to the intermediate node. The first terminal of the bootstrap capacitor is further connected by a second switch to receive a second supply voltage. A control circuit generates control signals for the first and second driver circuits and the first and second switches.
Abstract:
A half-bridge converter is controlled by a circuit including a differential circuit receiving a reference signal and a feedback signal which is a function of an output signal from the converter. The half-bridge converter includes high-side and low-side electronic switches. A comparator generates a PWM-modulated signal for controlling the converter as a function of the duty cycle of the PWM-modulated signal in response to a signal at an intermediate node between the high-side and low-side electronic switches and an output of the differential circuit. A gain circuit block coupled between the intermediate node and the input of the comparator applies a ramp signal to the input of the comparator which is a function of the signal at the intermediate node. A variable gain is applied by the gain circuit block in order to keep a constant value for the duty cycle of said PWM-modulated signal irrespective of converter operation.
Abstract:
A triangular-voltage generator has an input terminal that receives a power supply voltage and an output terminal that supplies a triangular-wave voltage having a repetition period. An operational amplifier in an integrator configuration has a first input, a second input and an output coupled to the output terminal. The second input receives a reference voltage as a function of the power supply voltage. The first input is selectively and alternately connected to the input terminal during a first half-period of the repetition period and to a reference terminal during a second half-period of the repetition period.
Abstract:
A triangular-voltage generator has an input terminal that receives a power supply voltage and an output terminal that supplies a triangular-wave voltage having a repetition period. An operational amplifier in an integrator configuration has a first input, a second input and an output coupled to the output terminal. The second input receives a reference voltage as a function of the power supply voltage. The first input is selectively and alternately connected to the input terminal during a first half-period of the repetition period and to a reference terminal during a second half-period of the repetition period.
Abstract:
A control device for a switching power converter having an inductor element, a switch coupled to the inductor element, a storage element coupled to an output on which an output voltage is provided, and a diode element coupled to the storage element. The control device generates a command signal to control the switch and determine storage of energy in the inductor element in a first interval, and transfer of energy onto the storage element through the diode element in a second interval. A voltage shifter module generates a feedback voltage shifted relative to the output voltage. An amplification module has a first input receiving the feedback voltage, a second input receiving the reference voltage, and an output that supplies, as a function of the difference between the feedback and reference voltages, a control signal. A control unit receives the control signal and generates the command signal to control the switch.
Abstract:
An energy harvesting interface receives an electrical signal from an inductive transducer and supplies a supply signal. The interface includes an input branch with a first switch and a second switch connected together in series between a first input terminal and an output terminal. The interface further includes a third switch and a fourth switch connected together in series between a second input terminal and the output terminal. A first electrical-signal-detecting device, coupled across the second switch, detects a first threshold value of an electric storage current in the inductor of the transducer. A second electrical-signal-detecting device, coupled across the fourth switch, detects whether the electric supply current that flows through the fourth switch reaches a second threshold value lower than the first threshold value. The second threshold is derived from the electric storage current.
Abstract:
A DC-DC converter independently supplies electrical loads. For each load, an output load signal is compared to a reference to generate a result indicating a need to supply the respective electrical load. A first detection is made as to whether a first electrical load needs to be supplied and a second detection is made as to whether any remaining electrical loads need to be supplied. The first electrical load is supplied if the first detection is positive and the second detection is negative.