Abstract:
Provided is a back light unit (BLU) for holographic display. The BLU includes a first diffraction grating attached to a waveguide, a second diffraction grating that supplies light to the first diffraction grating, a light source that supplies light to the second diffraction grating, and a light reflection element that reflects light towards the first diffraction grating. The back light unit may further include a lens that is disposed in front of the waveguide. The light reflection element may be disposed parallel to a rear surface of the waveguide. The light reflection element may be inclined with respect to the rear surface of the waveguide. The light reflection element may be a mirror or a prism array.
Abstract:
A method of generating a hologram includes receiving three-dimensional (3D) image data, dividing 3D image data into data groups which are independent from one another, by a first processor; calculating, from at least one of the data groups, hologram values to be displayed at respective positions on a hologram plane, by the first processor; calculating, from at least another one of the data groups, hologram values to be displayed at the respective positions on the hologram plane by a second processor, and summing the calculated hologram values for each of the respective positions on the hologram plane, by the first processor or the second processor, or by the first processor and the second processor in parallel.
Abstract:
Provided is a method for performing a Fourier transformation for generating a computer-generated holographic (CGH) image. The method includes generating first intermediate data by performing a first FFT calculation that relates to coordinates of a pupil of a user with respect to input image data; generating second intermediate data by calculating a light concentration effect correction term for correcting a light concentration effect occurring at the pupil of the user and multiplying the first intermediate data by the light concentration effect correction term; and performing a second FFT calculation that relates to the coordinates of the pupil of the user with respect to the second intermediate data.
Abstract:
Provided are a method and device for processing a holographic image. The method includes generating a complex array by performing frequency conversion of input image data on a pixel-by-pixel basis, encoding per-pixel amplitude information and per-pixel phase information represented by complex numbers included in the complex array into real number values, sorting the real number values of the per-pixel amplitudes according to a magnitude and setting a prescribed-order number from among the real number values of the per-pixel amplitudes to a reference value, and normalizing the real number values of the per-pixel amplitudes based on the reference value.
Abstract:
A holographic display apparatus includes: a light source configured to emit light; a spatial light modulator configured to sequentially generate hologram patterns for modulating the light and to sequentially reproduce frames of hologram images based on the hologram patterns; and a controller configured to provide hologram data signals to the spatial light modulator, the hologram data signals being used to sequentially generate the hologram patterns. The controller is configured to further provide, to the spatial light modulator, diffraction pattern data signals for forming periodic diffraction patterns for adjusting locations of the hologram images to be reproduced on a hologram image plane, the diffraction pattern data signals being configured to move the periodic diffraction patterns on the spatial light modulator along a predetermined direction for each of the frames.