Abstract:
Techniques for femtocell message delivery and network planning are described herein. A mobile device sends a registration request to an access point, such as a femtocell access point. If denied registration, the mobile device may return to service by a macro cell access point. A network entity, such as a femtocell gateway serving the access point, may determine an identification of the mobile device. The network entity may send the identification of mobile device and an identifier of the access point to an application server. The application server may create and send a targeted message to the mobile device based on the identification of mobile device and the identifier of the access point. The application server may determine a user count for the access point and facilitate network planning based on the user count.
Abstract:
Disclosed are systems and methods for joint parameter optimization for collocated macrocells and femtocells in a wireless communication network. In one aspect, the method comprises: collecting one or more performance parameters from the one or more collocated macrocells and femtocells, detecting frequent cell reselections or frequent cell handovers by mobile devices between the one or more collocated macrocells and femtocells, optimizing one or more cell reselection and handover parameters for the one or more collocated macrocells and femtocells based on the performance parameters, and overwriting one or more corresponding parameters of the collocated macrocells and femtocells with the one or more optimized cell reselection and handover parameters in order to reduce frequent cell reselections or frequent cell handovers by mobile devices between the one or more collocated macrocells and femtocells in a wireless communication network.
Abstract:
Disclosed are systems and methods for regulating system reselections by idle-mode mobile devices. In one aspect, a femtocell may be configured to reduce frequency of its reselection beacon, which reduces probability that a fast moving mobile device will detect the reselection beacon and reselect to that femtocell. This aspect may also delay femtocell reselection for slow moving mobile devices. In another aspect, a macrocell may slow down system reselection by adjusting cell reselection parameters used by mobile devices to determine the time needed to evaluate cell reselection criteria. Yet in another aspect, a macrocell may instruct a collocated femtocell to decrease its effective coverage area to avoid premature reselection by fast moving mobile devices. Yet in another aspect, a femtocell may use power boosting techniques to increase its reselection radius.