Abstract:
A method using Infrared Imaging Polarimetry for detecting the presence of foreign fluids on water comprises estimating an expected polarization response for a foreign fluid desired to be detected. Oil from an oil spill is one such foreign fluid. An optimal position of a polarimeter to take images of the water's surface is determined from the expected polarization response. The polarimeter is positioned at the optimal position and records raw image data of the water's surface to obtain polarized images of the area. The polarized images are corrected, and IR and polarization data products are computed. The IR and polarization data products are converted to multi-dimensional data set to form multi-dimensional imagery. Contrast algorithms are applied to the multi-dimensional imagery to form enhanced contrast images, from which foreign fluids can be automatically detected.
Abstract:
A method using Long Wave Infrared Imaging Polarimetry for improved mapping and perception of a roadway or path and for perceiving or detecting obstacles comprises recording raw image data using a polarimeter to obtain polarized images of the roadway or area. The images are then corrected for non-uniformity, optical distortion, and registration. IR and polarization data products are computed, and the resultant data products are converted to a multi-dimensional data set for exploitation. Contrast enhancement algorithms are applied to the multi-dimensional imagery to form enhanced object images. The enhanced object images may then be displayed to a user, and/or an annunciator may announce the presence of an object. Further, the vehicle may take evasive action based upon the presence of an object in the roadway.
Abstract:
A method for enhancing an image for facial recognition comprises capturing an image of the face with a polarizer and correcting the polarized image for non-uniformity. Stokes Parameters S0, S1, S2 are obtained by weighted subtraction of the polarized image to form Stokes images. DoLP is computed from the Stokes images, and facial recognition algorithms are applied to the DoLP image. A system for enhancing images for facial recognition comprises a polarimeter configured to record polarized image data of a subject's face, a signal processing unit and logic configured to receive and store in memory the image data from the polarimeter, calculate Stokes parameters from the image data, and compute a DoLP image from the Stokes parameters.