Abstract:
The disclosed embodiments relate to a system that optimizes a prognostic-surveillance system to achieve a user-selectable functional objective. During operation, the system allows a user to select a functional objective to be optimized from a set of functional objectives for the prognostic-surveillance system. Next, the system optimizes the selected functional objective by performing Monte Carlo simulations, which vary operational parameters for the prognostic-surveillance system while the prognostic-surveillance system operates on synthesized signals, to determine optimal values for the operational parameters that optimize the selected functional objective.
Abstract:
Herein is a self-tuning database management system (DBMS) storing JavaScript object notation (JSON) documents and operating a JSON datatype as native to the DBMS. In an embodiment, a computer hosts a DBMS that executes a data definition language (DDL) statement that defines, in a database dictionary of the DBMS, a JSON document column of a database table that stores JSON documents as instances of the JSON datatype that is native in the DBMS. The DBMS may autonomously set or adjust configuration settings that control behaviors such as a default width of a JSON document column, in lining or not of the JSON document column, kind and scope and duration of indexing of the JSON document column, and/or caching of the JSON document column such as in an in memory columnar unit (IMCU). The DBMS may use the various configuration settings to control how JSON documents and the native JSON datatype are stored and/or processed.
Abstract:
Herein is a self-tuning database management system (DBMS) storing JavaScript object notation (JSON) documents and operating a JSON datatype as native to the DBMS. In an embodiment, a computer hosts a DBMS that executes a data definition language (DDL) statement that defines, in a database dictionary of the DBMS, a JSON document column of a database table that stores JSON documents as instances of the JSON datatype that is native in the DBMS. The DBMS may autonomously set or adjust configuration settings that control behaviors such as a default width of a JSON document column, in lining or not of the JSON document column, kind and scope and duration of indexing of the JSON document column, and/or caching of the JSON document column such as in an in memory columnar unit (IMCU). The DBMS may use the various configuration settings to control how JSON documents and the native JSON datatype are stored and/or processed.
Abstract:
Techniques are described to improve query evaluation in computer systems. In an embodiment, a system receives a full text query for evaluation against a collection of hierarchically marked data object sets. The query specifies token(s) and context(s) which indicate hierarchical location(s) to match within a queried hierarchical data structure. To evaluate the query, the system determines a) data object set(s) that contain the query specified token(s) using token list(s), and/or b) data object set(s) that contain the query specified context(s) using label list(s).
Abstract:
Techniques support graph pattern matching queries inside a relational database management system (RDBMS) that supports SQL execution. The techniques compile a graph pattern matching query into a SQL query that can then be executed by the relational engine. As a result, techniques enable execution of graph pattern matching queries on top of the relational engine by avoiding any change in the existing SQL engine.
Abstract:
We describe a system that performs prognostic-surveillance operations based on an inferential model that dynamically adapts to evolving operational characteristics of a monitored asset. During a surveillance mode, the system receives a set of time-series signals gathered from sensors in the monitored asset. Next, the system uses an inferential model to generate estimated values for the set of time-series signals, and then performs a pairwise differencing operation between actual values and the estimated values for the set of time-series signals to produce residuals. Next, the system performs a sequential probability ratio test (SPRT) on the residuals to produce SPRT alarms. When a tripping frequency of the SPRT alarms exceeds a threshold value, which is indicative of an incipient anomaly in the monitored asset, the system triggers an alert. While the prognostic-surveillance system is operating in the surveillance mode, the system incrementally updates the inferential model based on the time-series signals.
Abstract:
Techniques are described herein for using user-defined aggregate functions for updating inverted index tables. A user-defined aggregate function is registered in a database system for updating an index table based on changes stored in a staging table. A query specifying the user-defined aggregate function may be executed in parallel to parallelize the updating of the index table.
Abstract:
Techniques are described herein for using user-defined aggregate functions for updating inverted index tables. A user-defined aggregate function is registered in a database system for updating an index table based on changes stored in a staging table. A query specifying the user-defined aggregate function may be executed in parallel to parallelize the updating of the index table.
Abstract:
Techniques are described herein for maintaining two copies of the same semi-structured data, where each copy is organized in a different format. One copy is in a first-format that may be convenient for storage, but inefficient for query processing. For example, the first-format may be a textual format that needs to be parsed every time a query needs to access individual data items within a semi-structured object. The database system intelligently loads semi-structured first-format data into volatile memory and, while doing so, converts the semi-structured first-format data to a second-format. Because the data in volatile memory is in the second-format, processing queries against the second-format data both allows disk I/0 to be avoided, and increases the efficiency of the queries themselves. For example, the parsing that may be necessary to run a query against a cached copy of the first-format data is avoided.
Abstract:
A data guide is dynamically generated. The data guide describes the structures of hierarchical data objects added to a collection of hierarchical data objects. Examples of hierarchical data objects are documents that conform to XML (Extensible Mark-up Language) or data objects that conform to JSON (JavaScript Object Notation). The data guide may be created and/or updated as hierarchical data objects are added to the collection.