Abstract:
In accordance with an example embodiment of the present invention, there is provided an apparatus, comprising at least one processing core configured to determine an opportunity for device-to-device, D2D, communication, and at least one transmitter configured to cause transmitting of a D2D communication request, wherein the D2D communication request at least one of comprises a radio resource control signaling message and comprises an indication of a type of D2D communication that is requested. The indicated type may comprise D2D communication with no fallback to cellular connectivity, wherein such a D2D communication can be established without involving a core network, CN.
Abstract:
Methods and apparatus are provided for securing device-to-device communications. A method can comprise: at an access network apparatus, obtaining from a core network apparatus and storing a first key shared between a first user equipment and the core network apparatus for device-to-device communications of the first user equipment; receiving from a second user equipment, a request for generating a second key for a device-to-device communication between the first user equipment and the second user equipment; in response to the request, generating the second key based on the first key and security parameters; and sending the second key to the second user equipment.
Abstract:
Methods, corresponding apparatuses, and computer program products for signaling radio bearer transmission in a heterogeneous network are provided. The method comprises performing, by a user equipment, as least one of the following: a local area radio resource control connection procedure with a local area base station over a local area specific signaling radio bearer; and a wide area radio resource control connection procedure with a wide area base station over a wide area specific signaling radio bearer via the local area base station. With the claimed inventions, the transmission of the specific signaling radio bearer (e.g., SRBO) in the heterogeneous network can be efficiently managed and implemented.
Abstract:
A method of secure charging for a device-to-device service may comprise: recording charging information of a device-to-device service between a first user equipment and a second user equipment, wherein the charging information is associated at least with the first user equipment; generating a first report comprising the charging information, wherein the first report is protected by a security key of the first user equipment; and sending the first report to a network node by the first user equipment, wherein the first report is used for charging for the device-to-device service together with a second report generated at the second user equipment, and wherein the second report comprises charging information associated at least with the device-to-device service of the second user equipment and is protected by a security key of the second user equipment.
Abstract:
Methods and apparatus are provided for differentiating security configurations in a radio local area network. A method can comprises: at a base station, sending a handover request to a local access point for initiating a handover of a user equipment from the base station to the local access point, the handover request comprising an indication of a scheme of security configuration to be used for protecting a communication between the base station and the user equipment. The method can further comprise, at the base station, forwarding to the user equipment a handover command received from the local access point, wherein the indication is comprised in the handover command by the local access point. The method can further comprise communicating with the user equipment according to the scheme of security configuration after the user equipment is handover to the local access point.
Abstract:
A method of secure charging for a device-to-device service may comprise: recording charging information of a device-to-device service between a first user equipment and a second user equipment, wherein the charging information is associated at least with the first user equipment; generating a first report comprising the charging information, wherein the first report is protected by a security key of the first user equipment; and sending the first report to a network node by the first user equipment, wherein the first report is used for charging for the device-to-device service together with a second report generated at the second user equipment, and wherein the second report comprises charging information associated at least with the device-to-device service of the second user equipment and is protected by a security key of the second user equipment.
Abstract:
A fast-accessing method may comprise: establishing a first security connection between a first network node and a user equipment; obtaining first information from a second network node, wherein the first information comprises at least one of system information of the second network node and an identifier of a security algorithm selected by the second network node for the user equipment; providing second information to the second network node, in response to an indication of the second network node from the user equipment, wherein the second information comprises security information related to the user equipment; and sending the first information to the user equipment for establishing a second security connection between the user equipment and the second network node.
Abstract:
Provided are methods, corresponding apparatuses, and computer program products for a fast handover. A method comprises generating, at a source base station serving a user equipment, a first message and a second message including security information for security communication between a target base station and the user equipment after a fast handover. The method also comprises transmitting simultaneously, from the source base station, the first and second messages respectively to the target base station and the user equipment. With the claimed inventions, a fast X2 handover procedure is complemented and becomes more feasible with proposed security handlings, making it possible to decrease the service interruption during X2 handover for users and hence improve the user experiences.
Abstract:
Various embodiments of the present invention provide a method for cell reselection, comprising: receiving, at a user equipment, system information from a network node that is shared by two or more operator networks, wherein the system information comprises first information associated with at least one operator network related to one or more neighboring cells for the user equipment; determining whether there is an operator network accessible to the user equipment in the at least one operator network, based at least in part on the first information; and performing a cell reselection procedure only when one or more accessible operator networks are determined.
Abstract:
Provided are methods, corresponding apparatuses, and computer program products for a fast handover. A method comprises generating, at a source base station serving a user equipment, a first message and a second message including security information for security communication between a target base station and the user equipment after a fast handover. The method also comprises transmitting simultaneously, from the source base station, the first and second messages respectively to the target base station and the user equipment. With the claimed inventions, a fast X2 handover procedure is complemented and becomes more feasible with proposed security handlings, making it possible to decrease the service interruption during X2 handover for users and hence improve the user experiences.