Abstract:
A decoding apparatus includes a memory device and a decoding circuit. The memory device is arranged for storing a data block with inter-row interleaving in a plurality of data rows of the data block and without intra-row interleaving in each of the data rows. The decoding circuit is coupled to the memory device. The decoding circuit is arranged for accessing the memory device to perform a first decoding operation with inter-row de-interleaving memory access, and accessing the memory device to perform a second decoding operation with intra-row de-interleaving memory access memory access.
Abstract:
A communication apparatus includes a low power wakeup receiver (LP-WUR) and a processor. The processor is configured to receive signals from a network apparatus via the LP-WUR, and perform operations including: receiving at least one synchronization signal sent by the network apparatus, wherein the at least one synchronization signal comprises at least one of a primary synchronization signal (PSS) and a secondary synchronization signal (SSS); and using the at least one synchronization signal to detect timing of a low power wakeup signal (LP-WUS).
Abstract:
Various solutions for power saving enhancements with a wake-up signal for a dual-radio system are described. An apparatus may configure a main radio of the apparatus to enter a sleep mode and a secondary radio of the apparatus to be in an active mode. The apparatus may receive, via the secondary radio, a first signal from a network node. The apparatus may apply the first signal for at least one of: a time or frequency synchronization with the network node; an indication of whether to wake up the main radio from the sleep mode; and a signal quality measurement.
Abstract:
A method of UE power profile adaptation to traffic and UE power consumption characteristics based on power profile is proposed. In one preferred embodiment, hybrid of bandwidth part (BWP) and power profile is proposed. UE is configured with multiple BWPs and each BWP includes a set of power profiles. Two types of adaptation triggering can be used, a first type of trigger is based on power saving signals sent from the network, and the second type of trigger is based on timers. When the traffic characteristic for UE changes, the network can send a power saving signal to UE to trigger power profile adaptation, e.g., BWP+power profile switching. When traffic has been digested and becomes sporadic, then power profile adaptation can be triggered based on timers, e.g., a timer for BWP adaptation and another timer for power profile adaptation.
Abstract:
Aspects of the disclosure provide a method and an apparatus for performing a bandwidth part (BWP) switching process within different switching delays. For example, the apparatus can include receiving circuitry and processing circuitry. The receiving circuitry can receive from a BS a signaling indicating a change to a BWP configuration of the UE. The processing circuitry can perform a BWP configuration switching process based on the change to the BWP configuration to switch an active BWP configuration to a new BWP configuration, and monitor data transmission from the BS with the new BWP configuration either after a first predefined switching delay when the change to the BWP configuration includes at least one of a predefined set of BWP configuration parameters or after a second predefined switching delay when the change to the BWP configuration does not include any one of the predefined set of BWP configuration parameters.
Abstract:
Various solutions with respect to cross-slot scheduling for power saving in mobile communications are described. An apparatus receives, from a wireless network, a control signaling. According to the control signaling, the apparatus changes an aspect of a power profile of at least one bandwidth part (BWP) of a plurality of BWPs without causing data interruption regarding data transmission or reception by the apparatus. The apparatus also receives, from the wireless network, an indication. According to the indication, the apparatus adapts a new minimum applicable value of at least one of a downlink scheduling offset (K0), an uplink scheduling offset (K2), and an aperiodic channel state information reference signal (CSI-RS) triggering offset for an active DL BWP or an active UL BWP of the plurality of BWPs.
Abstract:
Aspects of the disclosure provide a method and an apparatus for transitioning one or a plurality of activated secondary cells (SCells) between a dormancy behavior and an active behavior. For example, the apparatus can include receiving circuitry and processing circuitry. The receiving circuitry can be configured to receive a configuration indicating a number of SCell groups each including at least one of the SCells, and an indication of at least one of the SCell groups to be transitioned between the dormancy behavior and the active behavior. The processing circuitry can be configured to transition the at least one SCell of the at least one SCell group between the dormancy behavior and the active behavior.
Abstract:
Methods are proposed for UE to perform radio link monitoring (RLM) and beam failure detection (BFD) measurements in a relaxed measurement state with an extended evaluation period for power saving. Different criteria for UE to enter and exit the relaxed RLM/BFD measurement state are proposed. In relaxed measurement state, UE can perform RLM/BFD measurements with an extended evaluation period by a scaling factor K when the serving cell quality is higher than a threshold and/or when the serving cell quality variation is lower than a threshold within a time period.
Abstract:
Aspects of the disclosure further provide various apparatuses and methods for wireless communications. One apparatus includes processing circuitry that can determine a first transmission power for a first uplink transmission associated with the source cell and a second transmission power for a second uplink transmission associated with the target cell. When the first uplink transmission and the second uplink transmission overlap in time domain and a total power of the first transmission power and the second transmission power is above a first threshold, the processing circuitry reduces the first transmission power for the first uplink transmission to a third transmission power so that a total power of the second transmission power and the third transmission power is equal to or less than the first threshold. The processing circuitry performs the first uplink transmission at the third transmission power and the second uplink transmission at the second transmission power.
Abstract:
A method of supporting active bandwidth part (BWP) switching under carrier aggregation (CA) is proposed. To avoid longer switching delay and multiple interruptions in other component carriers (CCs)/cells, the starting time of the later active BWP switching in one cell should fall outside the switching delay of the earlier active BWP switching in another cell. If the later active BWP switching is DCI-based, then the network should schedule the later active BWP switching outside the switching delay of the earlier active BWP switching. If the later active BWP switching is timer-based, then the UE should not perform the later active BWP switching until the earlier active BWP switching is completed.