Abstract:
In general, this disclosure describes a high-level forwarding path description language (FPDL) for describing internal forwarding paths within a network device. The FPDL enables developers to create a template that describes a section of an internal forwarding path within the forwarding plane of a network device. The FPDL provides syntactical elements for specifying the allocation of forwarding path structures as well as enabling the run-time construction of internal forwarding paths to interconnect the forwarding path structures in a manner specific to packet, packet flow, and/or interface properties, for example. In conjunction with late binding techniques, whereby the control plane of the network device provides arguments to template parameters that drive allocation by the packet forwarding engines of forwarding path structures specified by the FPDL, the techniques provide control plane processes a unified interface with which to manage the operation of the packet forwarding engines.
Abstract:
A route for a data unit through a network may be defined based on a number of next hops. Exemplary embodiments described herein may implement a router forwarding table as a chained list of references to next hops. In one implementation, a device includes a forwarding table that includes: a first table configured to store, for each of a plurality of routes for data units in a network, a chain of links to next hops for the routes; and a second table configured to store the next hops. The device also includes a forwarding engine configured to assemble the next hops for the data units based on using the chain of links in the first table to retrieve the next hops in the second table and to forward the data units in the network based on the assembled next hops.
Abstract:
In general, this disclosure describes a high-level forwarding path description language (FPDL) for describing internal forwarding paths within a network device. The FPDL enables developers to create a template that describes a section of an internal forwarding path within the forwarding plane of a network device. The FPDL provides syntactical elements for specifying the allocation of forwarding path structures as well as enabling the run-time construction of internal forwarding paths to interconnect the forwarding path structures in a manner specific to packet, packet flow, and/or interface properties, for example. In conjunction with late binding techniques, whereby the control plane of the network device provides arguments to template parameters that drive allocation by the packet forwarding engines of forwarding path structures specified by the FPDL, the techniques provide control plane processes a unified interface with which to manage the operation of the packet forwarding engines.
Abstract:
A network device receives a packet with a multicast nexthop identifier, and creates a mask that includes addresses of egress packet forwarding engines, of the network device, to which to provide the packet. The network device divides the mask into two portions, generates two copies of the packet, provides a first portion of the mask in a first copy of the packet, and provides a second portion of the mask in a second copy of the packet. The network device also forwards the first copy of the packet to an address of a first egress packet forwarding engine provided in the first portion of the mask, and forwards the second copy of the packet to an address of a second egress packet forwarding engine provided in the second portion of the mask.