-
公开(公告)号:US20190051650A1
公开(公告)日:2019-02-14
申请号:US16078675
申请日:2016-03-28
Applicant: Intel Corporation
Inventor: Sansaptak Dasgupta , Han Wui Then , Marko Radosavljevic , Peter G. Tolchinsky , Roza Kotlyar , Valluri R. Rao
IPC: H01L27/092 , H01L29/20 , H01L29/205 , H01L29/16 , H01L29/06 , H01L29/778 , H01L21/02 , H01L21/28 , H01L21/8258 , H01L29/66 , H01L23/544 , H01L23/498
CPC classification number: H01L27/0922 , H01L21/02381 , H01L21/0243 , H01L21/02488 , H01L21/02513 , H01L21/0254 , H01L21/28264 , H01L21/823807 , H01L21/8258 , H01L23/49844 , H01L23/544 , H01L27/092 , H01L29/045 , H01L29/0649 , H01L29/16 , H01L29/2003 , H01L29/205 , H01L29/41766 , H01L29/4236 , H01L29/66462 , H01L29/7786 , H01L29/7787 , H01L2223/54493 , H04B1/38
Abstract: This disclosure pertains to a gallium nitride transistor that is formed in a trench etched into a silicon substrate. A gallium nitride layer is on the trench of the silicon substrate. A source electrode and a drain electrode reside on the gallium nitride layer. A gate electrode resides on the gallium nitride layer between the source electrode and the drain electrode. A first polarization layer resides on the gallium nitride layer between the source electrode and the gate electrode, and a second polarization layer resides on the gallium nitride layer between the gate electrode and the drain electrode. The silicon substrate can include a silicon 111 substrate.
-
公开(公告)号:US10153372B2
公开(公告)日:2018-12-11
申请号:US15117590
申请日:2014-03-27
Applicant: INTEL CORPORATION
Inventor: Stephen M. Cea , Roza Kotlyar , Harold W. Kennel , Glenn A. Glass , Anand S. Murthy , Willy Rachmady , Tahir Ghani
IPC: H01L29/78 , H01L29/66 , H01L29/10 , H01L27/092 , H01L29/04 , H01L29/06 , H01L29/161 , H01L29/165
Abstract: Techniques are disclosed for incorporating high mobility strained channels into fin-based NMOS transistors (e.g., FinFETs such as double-gate, trigate, etc), wherein a stress material is cladded onto the channel area of the fin. In one example embodiment, a germanium or silicon germanium film is cladded onto silicon fins in order to provide a desired tensile strain in the core of the fin, although other fin and cladding materials can be used. The techniques are compatible with typical process flows, and cladding deposition can occur at a plurality of locations within typical process flow. In various embodiments, fins may be formed with a minimum width (or later thinned) so as to improve transistor performance. In some embodiments, a thinned fin also increases tensile strain across the core of a cladded fin. In some cases, strain in the core may be further enhanced by adding an embedded silicon epitaxial source and drain.
-
公开(公告)号:US09911835B2
公开(公告)日:2018-03-06
申请号:US15410548
申请日:2017-01-19
Applicant: Intel Corporation
Inventor: Roza Kotlyar , Stephen M. Cea , Gilbert Dewey , Benjamin Chu-Kung , Uygar E. Avci , Rafael Rios , Anurag Chaudhry , Thomas D. Linton, Jr. , Ian A. Young , Kelin J. Kuhn
IPC: H01L29/16 , H01L29/66 , H01L29/78 , H01L29/739 , H01L29/161 , H01L29/06 , H01L29/24 , H01L29/267 , H01L27/092 , H01L29/04 , H01L29/10 , H01L29/165 , H01L29/20 , H01L29/423 , H01L29/786
CPC classification number: H01L29/66977 , H01L27/092 , H01L29/045 , H01L29/0676 , H01L29/068 , H01L29/1054 , H01L29/16 , H01L29/161 , H01L29/165 , H01L29/20 , H01L29/24 , H01L29/267 , H01L29/42392 , H01L29/7391 , H01L29/7842 , H01L29/785 , H01L29/78603 , H01L29/78642 , H01L29/78684 , H01L29/78696
Abstract: Tunneling field effect transistors (TFETs) for CMOS architectures and approaches to fabricating N-type and P-type TFETs are described. For example, a tunneling field effect transistor (TFET) includes a homojunction active region disposed above a substrate. The homojunction active region includes a relaxed Ge or GeSn body having an undoped channel region therein. The homojunction active region also includes doped source and drain regions disposed in the relaxed Ge or GeSn body, on either side of the channel region. The TFET also includes a gate stack disposed on the channel region, between the source and drain regions. The gate stack includes a gate dielectric portion and gate electrode portion.
-
公开(公告)号:US09893149B2
公开(公告)日:2018-02-13
申请号:US14935971
申请日:2015-11-09
Applicant: Intel Corporation
Inventor: Stephen M. Cea , Anand S. Murthy , Glenn A. Glass , Daniel B. Aubertine , Tahir Ghani , Jack T. Kavalieros , Roza Kotlyar
IPC: H01L29/10 , H01L29/66 , H01L29/06 , H01L29/165 , H01L29/78 , H01L21/762 , H01L29/16 , H01L29/161 , H01L29/08
CPC classification number: H01L29/1054 , H01L21/76224 , H01L29/06 , H01L29/0649 , H01L29/0653 , H01L29/0847 , H01L29/16 , H01L29/161 , H01L29/165 , H01L29/66545 , H01L29/66795 , H01L29/66818 , H01L29/785 , H01L29/7851
Abstract: Techniques are disclosed for incorporating high mobility strained channels into fin-based transistors (e.g., FinFETs such as double-gate, trigate, etc), wherein a stress material is cladded onto the channel area of the fin. In one example embodiment, silicon germanium (SiGe) is cladded onto silicon fins to provide a desired stress, although other fin and cladding materials can be used. The techniques are compatible with typical process flows, and the cladding deposition can occur at a plurality of locations within the process flow. In some cases, the built-in stress from the cladding layer may be enhanced with a source/drain stressor that compresses both the fin and cladding layers in the channel. In some cases, an optional capping layer can be provided to improve the gate dielectric/semiconductor interface. In one such embodiment, silicon is provided over a SiGe cladding layer to improve the gate dielectric/semiconductor interface.
-
公开(公告)号:US09871117B2
公开(公告)日:2018-01-16
申请号:US15062007
申请日:2016-03-04
Applicant: Intel Corporation
Inventor: Brian S. Doyle , Uday Shah , Roza Kotlyar , Charles C. Kuo
IPC: H01L31/072 , H01L29/66 , H01L29/78 , H01L29/10 , H01L29/165 , H01L29/205 , H01L29/739 , H01L29/749 , H01L21/02 , H01L21/306 , H01L29/49 , H01L29/161 , H01L29/201 , H01L29/08
CPC classification number: H01L29/66666 , H01L21/02532 , H01L21/30604 , H01L29/0847 , H01L29/1037 , H01L29/1054 , H01L29/161 , H01L29/165 , H01L29/201 , H01L29/205 , H01L29/4983 , H01L29/66356 , H01L29/66363 , H01L29/7391 , H01L29/749 , H01L29/7827 , H01L29/7848
Abstract: Vertical transistor devices are described. For example, in one embodiment, a vertical transistor device includes an epitaxial source semiconductor region disposed on a substrate, an epitaxial channel semiconductor region disposed on the source semiconductor region, an epitaxial drain semiconductor region disposed on the channel semiconductor region, and a gate electrode region surrounding sidewalls of the semiconductor channel region. A composition of at least one of the semiconductor regions varies along a longitudinal axis that is perpendicular with respect to a surface of the substrate.
-
公开(公告)号:US20170012116A1
公开(公告)日:2017-01-12
申请号:US15270795
申请日:2016-09-20
Applicant: Intel Corporation
Inventor: Ravi Pillarisetty , Been-Yih Jin , Benjamin Chu-Kung , Matthew V. Metz , Jack T. Kavalieros , Marko Radosavljevic , Roza Kotlyar , Willy Rachmady , Niloy Mukherjee , Gilbert Dewey , Robert S. Chau
IPC: H01L29/775 , H01L29/66 , H01L27/088 , H01L29/267 , H01L29/06
CPC classification number: H01L27/092 , H01L21/02532 , H01L21/02546 , H01L21/283 , H01L27/088 , H01L29/0653 , H01L29/155 , H01L29/165 , H01L29/267 , H01L29/517 , H01L29/66431 , H01L29/66522 , H01L29/66553 , H01L29/775 , H01L29/7782
Abstract: A quantum well transistor has a germanium quantum well channel region. A silicon-containing etch stop layer provides easy placement of a gate dielectric close to the channel. A group III-V barrier layer adds strain to the channel. Graded silicon germanium layers above and below the channel region improve performance. Multiple gate dielectric materials allow use of a high-k value gate dielectric.
Abstract translation: 量子阱晶体管具有锗量子阱沟道区域。 含硅蚀刻停止层提供了靠近通道的栅电介质的容易放置。 III-V族阻挡层增加了通道的应变。 通道区域上方和下方的分级硅锗层提高性能。 多栅极电介质材料允许使用高k值栅极电介质。
-
公开(公告)号:US20160071934A1
公开(公告)日:2016-03-10
申请号:US14935971
申请日:2015-11-09
Applicant: Intel Corporation
Inventor: Stephen M. Cea , Anand S. Murthy , Glenn A. Glass , Daniel B. Aubertine , Tahir Ghani , Jack T. Kavalieros , Roza Kotlyar
IPC: H01L29/10 , H01L29/78 , H01L29/06 , H01L29/165 , H01L29/08
CPC classification number: H01L29/1054 , H01L21/76224 , H01L29/06 , H01L29/0649 , H01L29/0653 , H01L29/0847 , H01L29/16 , H01L29/161 , H01L29/165 , H01L29/66545 , H01L29/66795 , H01L29/66818 , H01L29/785 , H01L29/7851
Abstract: Techniques are disclosed for incorporating high mobility strained channels into fin-based transistors (e.g., FinFETs such as double-gate, trigate, etc), wherein a stress material is cladded onto the channel area of the fin. In one example embodiment, silicon germanium (SiGe) is cladded onto silicon fins to provide a desired stress, although other fin and cladding materials can be used. The techniques are compatible with typical process flows, and the cladding deposition can occur at a plurality of locations within the process flow. In some cases, the built-in stress from the cladding layer may be enhanced with a source/drain stressor that compresses both the fin and cladding layers in the channel. In some cases, an optional capping layer can be provided to improve the gate dielectric/semiconductor interface. In one such embodiment, silicon is provided over a SiGe cladding layer to improve the gate dielectric/semiconductor interface.
-
公开(公告)号:US20160064520A1
公开(公告)日:2016-03-03
申请号:US14924643
申请日:2015-10-27
Applicant: Intel Corporation
Inventor: Ravi Pillarisetty , Been-Yin Jin , Benjamin Chu-Kung , Matthew V. Metz , Jack T. Kavalieros , Marko Radosavljevic , Roza Kotlyar , Willy Rachmady , Niloy Mukherjee , Gilbert Dewey , Robert S. Chau
IPC: H01L29/66 , H01L21/283 , H01L21/02 , H01L29/15 , H01L29/267
CPC classification number: H01L27/092 , H01L21/02532 , H01L21/02546 , H01L21/283 , H01L27/088 , H01L29/0653 , H01L29/155 , H01L29/165 , H01L29/267 , H01L29/517 , H01L29/66431 , H01L29/66522 , H01L29/66553 , H01L29/775 , H01L29/7782
Abstract: A quantum well transistor has a germanium quantum well channel region. A silicon-containing etch stop layer provides easy placement of a gate dielectric close to the channel. A group III-V barrier layer adds strain to the channel. Graded silicon germanium layers above and below the channel region improve performance. Multiple gate dielectric materials allow use of a high-k value gate dielectric.
Abstract translation: 量子阱晶体管具有锗量子阱沟道区域。 含硅蚀刻停止层提供了靠近通道的栅电介质的容易放置。 III-V族阻挡层增加了通道的应变。 通道区域上方和下方的分级硅锗层提高性能。 多栅极电介质材料允许使用高k值栅极电介质。
-
公开(公告)号:US09219135B2
公开(公告)日:2015-12-22
申请号:US14057204
申请日:2013-10-18
Applicant: Intel Corporation
Inventor: Ravi Pillarisetty , Been-Yin Jin , Benjamin Chu-Kung , Matthew V. Metz , Jack T. Kavalieros , Marko Radosavljevic , Roza Kotlyar , Willy Rachmady , Niloy Mukherjee , Gilbert Dewey , Robert S. Chau
IPC: H01L29/775 , H01L29/165 , H01L29/267 , H01L29/66 , H01L29/778 , H01L29/51
CPC classification number: H01L27/092 , H01L21/02532 , H01L21/02546 , H01L21/283 , H01L27/088 , H01L29/0653 , H01L29/155 , H01L29/165 , H01L29/267 , H01L29/517 , H01L29/66431 , H01L29/66522 , H01L29/66553 , H01L29/775 , H01L29/7782
Abstract: A quantum well transistor has a germanium quantum well channel region. A silicon-containing etch stop layer provides easy placement of a gate dielectric close to the channel. A group III-V barrier layer adds strain to the channel. Graded silicon germanium layers above and below the channel region improve performance. Multiple gate dielectric materials allow use of a high-k value gate dielectric.
Abstract translation: 量子阱晶体管具有锗量子阱沟道区域。 含硅蚀刻停止层提供了靠近通道的栅电介质的容易放置。 III-V族阻挡层增加了通道的应变。 通道区域上方和下方的分级硅锗层提高性能。 多栅极电介质材料允许使用高k值栅极电介质。
-
公开(公告)号:US12230687B2
公开(公告)日:2025-02-18
申请号:US17117337
申请日:2020-12-10
Applicant: Intel Corporation
Inventor: Roza Kotlyar , Stephanie A. Bojarski , Hubert C. George , Payam Amin , Patrick H. Keys , Ravi Pillarisetty , Roman Caudillo , Florian Luethi , James S. Clarke
Abstract: Disclosed herein are lateral gate material arrangements for quantum dot devices, as well as related computing devices and methods. For example, in some embodiments, a quantum dot device may include: a quantum well stack; and a gate above the quantum well stack, wherein the gate includes a gate electrode, the gate electrode includes a first material proximate to side faces of the gate and a second material proximate to a center of the gate, and the first material has a different material composition than the second material.
-
-
-
-
-
-
-
-
-