Abstract:
A system and computer-implemented method for associating images with semantic entities and providing search results using the semantic entities. An image database contains one or more source images associated with one or more images labels. A computer may generate one or more documents containing the labels associated with each image. Analysis may be performed on the one or more documents to associate the source images with semantic entities. The semantic entities may be used to provide search results. In response to receiving a target image as a search query, the target image may be compared with the source images to identify similar images. The semantic entities associated with the similar images may be used to determine a semantic entity for the target image. The semantic entity for the target image may be used to provide search results in response to the search initiated by the target image.
Abstract:
Implementations of the present disclosure include actions of receiving image data, the image data being provided from a camera and corresponding to a scene viewed by the camera, receiving one or more annotations, the one or more annotations being provided based on one or more entities determined from the scene, each annotation being associated with at least one entity, determining one or more actions based on the one or more annotations, and providing instructions to display an action interface including one or more action elements, each action element being selectable to induce execution of a respective action, the action interface being displayed in a viewfinder.
Abstract:
Systems and methods for a dynamic visual search engine are provided. In one example method, a criteria used to partition a set of compressed image descriptors into multiple database shards may be determined. Additionally, a size of a dynamic index may be determined. The dynamic index may represent a dynamic number of images and may be configured to accept insertion of reference images into the dynamic index that can be search against immediately. According to the method, an instruction to merge the uncompressed image descriptors of the dynamic index into the database shards of the compressed image descriptors may be received, and the uncompressed image descriptors of the dynamic index may be responsively merged into the database shards of the compressed image descriptors based on the criteria.
Abstract:
This invention relates to building a landmark database from web data. In one embodiment, a computer-implemented method builds a landmark database. Web data including a web page is received from one or more websites via one or more networks. The web data is interpreted using at least one processor to determine landmark data describing a landmark. At least a portion of the landmark data identifies a landmark. Finally, a visual model is generated using the landmark data. A computing device is able to recognize the landmark in an image based on the visual model.
Abstract:
Aspects of the invention pertain to matching a selected image/photograph against a database of reference images having location information. The image of interest may include some location information itself, such as latitude/longitude coordinates and orientation. However, the location information provided by a user's device may be inaccurate or incomplete. The image of interest is provided to a front end server, which selects one or more cells to match the image against. Each cell may have multiple images and an index. One or more cell match servers compare the image against specific cells based on information provided by the front end server. An index storage server maintains index data for the cells and provides them to the cell match servers. If a match is found, the front end server identifies the correct location and orientation of the received image, and may correct errors in an estimated location of the user device.
Abstract:
A facial recognition search system identifies one or more likely names (or other personal identifiers) corresponding to the facial image(s) in a query as follows. After receiving the visual query with one or more facial images, the system identifies images that potentially match the respective facial image in accordance with visual similarity criteria. Then one or more persons associated with the potential images are identified. For each identified person, person-specific data comprising metrics of social connectivity to the requester are retrieved from a plurality of applications such as communications applications, social networking applications, calendar applications, and collaborative applications. An ordered list of persons is then generated by ranking the identified persons in accordance with at least metrics of visual similarity between the respective facial image and the potential image matches and with the social connection metrics. Finally, at least one person identifier from the list is sent to the requester.
Abstract:
A visual query is received from a client system, along with location information for the client system, and processed by a server system. The server system sends the visual query and the location information to a visual query search system, and receives from the visual query search system enhanced location information based on the visual query and the location information. The server system then sends a search query, including the enhanced location information, to a location-based search system. The search system receives and provides to the client one or more search results to the client system.
Abstract:
Implementations of the present disclosure include actions of receiving image data of an image capturing a scene, receiving data describing one or more entities determined from the scene, the one or more entities being determined from the scene, determining one or more actions based on the one or more entities, each action being provided at least partly based on search results from searching the one or more entities, and providing instructions to display an action interface comprising one or more action elements, each action element being to induce execution of a respective action, the action interface being displayed in a viewfinder
Abstract:
Techniques for providing image search templates are provided. An image search template may be associated with an image search query to aid the user in capturing an image that will be appropriate for processing the search query. The template may be displayed as an overlay during an image capturing process to indicate an appropriate image capturing pose, range, angle, or other view characteristics that may provide more accurate search results. The template may also be used in the image search query to segment the image and identify features relevant to the search query. Images in an image database may be clustered using characteristics of the images or metadata associated with the images in order to establish groups of images from which templates may be derived. The generated templates may be provided to users to assist in capturing images to be used as search engine queries.
Abstract:
A system and computer-implemented method for associating images with semantic entities and providing search results using the semantic entities. An image database contains one or more source images associated with one or more images labels. A computer may generate one or more documents containing the labels associated with each image. Analysis may be performed on the one or more documents to associate the source images with semantic entities. The semantic entities may be used to provide search results. In response to receiving a target image as a search query, the target image may be compared with the source images to identify similar images. The semantic entities associated with the similar images may be used to determine a semantic entity for the target image. The semantic entity for the target image may be used to provide search results in response to the search initiated by the target image.