Abstract:
A system including a multi-tube fuel nozzle, including a first plate having a first plurality of openings, a plurality of tubes extending through the first plurality of openings in the first plate, wherein each tube of the plurality of tubes includes an air inlet, a fuel inlet, and a fuel-air mixture outlet, and a resilient metallic seal disposed along the first plate about the plurality of tubes.
Abstract:
A fuel nozzle assembly includes a centerbody and a cartridge that extends axially through the centerbody. The cartridge defines a purge air passage within the centerbody. The cartridge includes a tip portion that is defined by a tip body. The tip body defines a throat portion and a mouth portion which is defined downstream from the throat portion. The tip body further defines a plurality of injection ports circumferentially spaced around the throat portion. The injection ports provide for fluid communication between the purge air passage and the throat portion of the tip body.
Abstract:
A premix fuel nozzle assembly includes a center body, a pilot premix fuel nozzle assembly that extends axially through the center body and that includes a premix tip having a plurality of premix tubes that each defines a premix passage and a fuel port. The premix passage of each premix tube is in fluid communication with the pilot air passage. The premix fuel nozzle assembly further includes a purge air cartridge assembly that extends axially within the pilot air passage. The purge air cartridge assembly includes a feed tube portion and a tip portion that define a purge air passage within the pilot air passage. The tip portion comprises an aft wall that extends at least partially through an opening defined by the premix tip. The aft wall includes a single axially extending orifice that is in fluid communication with the purge air passage.
Abstract:
A premix pilot nozzle includes a tip portion having a downstream surface that extends between a downstream end of an inner wall of the tip portion and a downstream end of an outer wall of the tip portion. The downstream end of the inner wall terminates axially upstream from the downstream end of the outer wall. At least a portion of the downstream surface is curvilinear. The tip portion further comprises a plurality of axially extending premix tubes annularly arranged about the tip portion. Each premix tube defines a premix flow passage through the tip portion. Each premix tube also includes an outlet that is axially offset from the downstream surface.
Abstract:
A fuel nozzle for a gas turbine engine that includes: an elongated centerbody; an elongated peripheral wall formed about the centerbody so to define a primary flow annulus therebetween; a primary fuel supply and a primary air supply in fluid communication with an upstream end of the primary flow annulus; and a pilot nozzle. The pilot nozzle may be formed in the centerbody and include: axially elongated mixing tubes defined within a centerbody wall; a fuel port positioned on the mixing tubes for connecting each to a secondary fuel supply; and a secondary air supply configured so to fluidly communicate with an inlet of each of the mixing tubes. A plurality of the mixing tubes may be formed as canted mixing tubes that are configured for inducing a swirling flow about the central axis in a collective discharge therefrom.
Abstract:
A premix fuel nozzle assembly includes a center body, a pilot premix fuel nozzle assembly that extends axially through the center body and that includes a premix tip having a plurality of premix tubes that each defines a premix passage and a fuel port. The premix passage of each premix tube is in fluid communication with the pilot air passage. The premix fuel nozzle assembly further includes a purge air cartridge assembly that extends axially within the pilot air passage. The purge air cartridge assembly includes a feed tube portion and a tip portion that define a purge air passage within the pilot air passage. The tip portion comprises an aft wall that extends at least partially through an opening defined by the premix tip. The aft wall includes a single axially extending orifice that is in fluid communication with the purge air passage.
Abstract:
A system including a multi-tube fuel nozzle, including a first plate having a first plurality of openings, a plurality of tubes extending through the first plurality of openings in the first plate, wherein each tube of the plurality of tubes includes an air inlet, a fuel inlet, and a fuel-air mixture outlet, and a resilient metallic seal disposed along the first plate about the plurality of tubes.
Abstract:
A micro-mixer nozzle for use in a combustor of a combustion turbine engine, the micro-mixer nozzle including: a fuel plenum defined by a shroud wall connecting a periphery of a forward tube sheet to a periphery of an aft tubesheet; a plurality of mixing tubes extending across the fuel plenum for mixing a supply of compressed air and fuel, each of the mixing tubes forming a passageway between an inlet formed through the forward tubesheet and an outlet formed through the aft tubesheet; and a wall mixing tube formed in the shroud wall.
Abstract:
A turbomachine combustor assembly includes a combustor including a combustor body extending from a head end to a second end through a combustion zone. At least one injector is configured and disposed to introduce a first combustible fluid into the combustion zone at the head end of the combustor body. At least one late lean injector (LLI) is configured and disposed to introduce a second combustible fluid downstream of the first combustible fluid. An external fluid delivery system is fluidically connected to the at least one LLI. The external fluid delivery system includes at least one combustible fluid delivery conduit that extends from a first end fluidically connected to the LLI to a second end external to the turbomachine combustor assembly. The second end is configured and disposed to deliver the second combustible mixture to the LLI.
Abstract:
A system including a multi-tube fuel nozzle, including a plurality of tubes extending in an axial direction relative to a central axis of the multi-tube fuel nozzle, wherein each tube of the plurality of tubes includes an air inlet, a fuel inlet, and a fuel-air mixture outlet; and an inlet flow conditioner, including a plate extending in a radial direction relative to the central axis of the multi-tube fuel nozzle; an outer wall extending circumferentially about the plate, wherein the outer wall is coupled to the plate; and a plurality of air openings in the plate, the outer wall, or a combination thereof, wherein the plurality of air openings are disposed upstream from the air inlets in the plurality of tubes.