Abstract:
In a photoelectric conversion panel, a plurality of TFTs are formed over an insulating substrate. The TFTs are covered by a first planarizing film. A plurality of photodiodes are formed over the first planarizing film. The photodiodes and the first planarizing film are covered by a second planarizing film. A scintillator contains cesium iodide and is directly vapor-deposited over the photoelectric conversion panel. The scintillator is formed in an area, over the second planarizing film, extending to the outside of an area in which the TFTs and the photodiodes are formed and located inside edges of the first and second polarizing films.
Abstract:
In an X-ray imaging apparatus, a detection panel has monitor pixels for monitoring X-rays. A signal processor samples a dose signal of a dose per unit time of X-rays according to an output of the monitor pixels. A start detector checks whether irradiation of X-rays is started according to a result of comparison between the dose signal and a start threshold. An AEC device acquires cumulative dose from a start time of the start of irradiation of X-rays until acquisition time after a predetermined time according to the dose signal. According to the cumulative dose, a predicted time point of a reach of the cumulative dose to a target dose is estimated. A stop signal is transmitted to a radiation source controller at the predicted time point, to stop the irradiation of X-rays.
Abstract:
A radiographic imaging device includes a radiation detection element including plural same sized hexagonal shaped pixels that detect radiation and are arrayed in a honeycomb pattern, and a pixel density conversion section that performs interpolation processing such that first image data obtained from the radiation detection element is converted into second image data representing an image in which plural pixels are arrayed in a square grid pattern, wherein when d1max denotes the length of the longest diagonal of the hexagonal shaped pixels, S1 denotes the surface area of the hexagonal shaped pixels, and d2max denotes the length of the diagonals of the square grid of the second image data, d1max is equal to or greater than d2max, and d2max is equal to or greater than the value of the square root of S1.
Abstract:
The present invention provides a radiation detecting element and a radiographic imaging device that may reliably detect irradiation of radiation even when a region where radiation is irradiated is set narrowly. Namely, the present invention provides a radiation detection element and a radiographic imaging apparatus, in which radiographic imaging pixels and radiation detection pixels are provided at intersecting portions of scan lines and signal lines.
Abstract:
The present invention provides a radiographic image detector that maintains even resolution in 6 directions before and after 4 pixel binning processing. In the radiographic image detector, first TFT switches of each pixel are switched ON according to control signals from plural first scan lines, and charge signals according to accumulated charges are transmitted through data lines. For each pixel group configured by combinations of plural adjacent pixels, second TFT switches of the pixels configuring each of the pixel groups are switched ON according to control signals from plural second scan lines, and binning processing is performed in which 4 pixels worth of charges are read simultaneously and are combined, and charge signals according to the amount of the combined charges are transmitted through the data lines.
Abstract:
The present invention provides radiation detector, radiographic imaging device and radiographic imaging system that may detect irradiated radiation while maintaining quality of radiographic image. The radiation detector has: pixels having a sensor portion that generates charges in accordance with light converted from irradiated radiation, TFT switch that outputs, to a signal line, charges read-out from the sensor portion, and radiation detection TFT switch that is not connected to a signal line; and radiation detection pixels that have the sensor portion, the TFT switch, and radiation detection TFT switch that is connected to a signal line and that outputs, to the signal line, charges read-out from the sensor portion. The radiation detection TFT switches are connected to radiation detection scan lines, and ON/OFF states are controlled by scan signals that are outputted from a radiation detection control circuit.