Abstract:
A measuring transducer comprises a measuring tube having an inlet-side tube end and an outlet-side tube end, a tube wall having a predetermined wall thickness and a lumen surrounded by the tube wall and extending between the first and second tube end, a support element, which with a support end is mechanically connected with the tube end and with a support end is mechanically connected with the tube end, as well as, laterally spaced from the measuring tube, a support element, which with a support end is mechanically coupled with the support end and with a support end is mechanically coupled with the support end. The measuring tube is adapted to guide a flowing medium in its lumen and caused to oscillate about a static resting position for producing Coriolis forces. An oscillation exciter as well as at least one oscillation sensor. The measuring transducer has a wanted mode having a resonant frequency, in which the measuring tube can execute wanted oscillations around its static resting position suitable for producing Coriolis forces and having a wanted frequency corresponding to the resonant frequency of the wanted mode. The oscillation exciter is placed externally on the measuring tube and one exciter component is placed on the support element, is, furthermore, adapted to excite the wanted oscillations of the measuring tube, and the oscillation sensor, of which one sensor component is placed externally on the measuring tube and one sensor component is placed on the support element, is adapted to register movements of the measuring tube relative to the support element and to convert such into an oscillatory signal representing oscillations of the measuring tube.
Abstract:
A method for determining the viscosity of a medium with a Coriolis mass flowmeter having at last two measuring tubes through which a medium can flow, comprising: exciting the measuring tubes; and determining at least the viscosity of the medium by evaluation of measured values obtained from the measuring device. The measuring values comprise the amplitude of torsional oscillation reached, wherein the amplitude of torsional oscillation reached is evaluated for determining the viscosity of the medium at a set excitation intensity of the measuring device and using the damping coefficient of the medium.
Abstract:
The measuring system comprises: a measuring transducer, for producing oscillatory signals dependent on a viscosity of the flowing medium and/or a Reynolds number of the flowing medium; transmitter electronics for driven the measuring transducer and for evaluating oscillatory signals delivered by the measuring transducer. The measuring transducer includes: an inlet-side flow divider; an outlet-side flow divider; at least two, mutually parallel, straight, measuring tubes, connected to the flow dividers; and an electromechanical exciter mechanism for exciting and maintaining mechanical oscillations of the two measuring tubes. Each of the two measuring tubes opens with an inlet-side measuring tube end into a flow opening and with an outlet-side. The transmitter electronics feeds, by means of an electrical driver signal supplied to the exciter mechanism, electrical excitation power into the exciter mechanism, while the exciter mechanism converts electrical excitation power partially into opposite-equal torsional oscillations of the at least two measuring tubes.
Abstract:
A microwave measuring device comprises a measuring tube for conducting the medium; a first microwave antenna designed to generate a variable microwave signal and to emit said signal into the medium; and a magnetic-field-sensitive measuring device for determining a magnetic field and comprising a measuring device component having an optically excitable material, the microwave signal acting on the optically excitable material; an optical excitation device designed to optically excite the optically excitable material; and an optical detection device designed to provide a detection signal correlating with a light emitted by the optically excitable material. An evaluation circuit is designed to determine a magnetic field and/or a change in the magnetic field on the basis of the detection signal.
Abstract:
A measuring system comprises a measuring and operation electronic unit (ME) and a transducer device electrically coupled thereto. The transducer device has two tubes through which a fluid flows and causes to vibrate, a vibration exciter, two vibration sensors on the inlet and outlet sides, respectively, for generating vibration signals, and an inlet-side temperature sensor coupled to a wall of the tube for thermal conduction and an outlet-side temperature sensor coupled to a wall of the tube for generating temperature measurement signals. The measuring and operation electronic unit feeds electrical power into the vibration exciter in order to effect mechanical vibrations of the tube. Furthermore, the ME generates a mass flow sequence, by means of each of the vibration signals and each of the temperature measurement signals in such a way that mass flow measurement values are independent of the temperature difference.
Abstract:
A vibratory measuring device for determining a mass flow rate or a density of a flowable medium comprises: a vibratory measuring tube which is curved when in the idle position thereof; a support body; a first bearing body on the inlet side; a second bearing body on the outlet side; two exciter units and two sensor units; and an operation and evaluation circuit. The bearing bodies are connected to the support body, wherein the measuring tube is supported on the bearing bodies in such a way that flexural vibration modes of the measuring tube have vibration nodes on the bearing bodies, wherein the exciter units are each configured, according to excitation signals, to excite flexural vibrations of the measuring tube both in the measuring tube plane and perpendicular to the measuring tube plane, wherein the sensor units are each configured to detect flexural vibrations of the measuring tube both in the measuring tube plane and perpendicular to the measuring tube plane and to output vibration-dependent sensor signals, wherein the operation and evaluation circuit is configured to output excitation signals to the excitation units for the selective excitation of flexural vibration modes and to receive the sensor signals of the sensor units.
Abstract:
A mass flow sensor includes: a vibratory measurement tube bent in a tube plane; a vibration exciter for exciting bending vibrations in a bending vibration use-mode; two vibration sensors for sensing vibrations; a support system having a support plate, bearing bodies on the inlet and sides; and a sensor housing, wherein: the support system has support system vibration modes which include elastic deformations of the support plate; the measurement tube is connected fixedly to the support plate by the bearing body on the inlet side and by the bearing body on the outlet side; and the support plate has a number of spring-loaded bearings exposed through cut-outs in the support plate by which the support plate is mounted on the sensor housing with degrees of vibrational freedom, the natural frequencies of which are lower than a use-mode natural frequency of the bending vibration use-mode.
Abstract:
A method for determining properties of a hydrocarbon containing gas mixture, especially natural gas or biogas, comprising: allowing the gas mixture to flow through a measuring arrangement; determining a pressure- and temperature dependent viscosity measured value, an associated measured value of temperature and an associated pressure measured value of the flowing gas mixture; ascertaining a first value of a first variable, which characterizes the energy content of the flowing gas mixture, based on viscosity measured value, the associated measured value of temperature, and the associated pressure measured value, wherein the first variable characterizing the energy content is the Wobbe index or the calorific value of the flowing gas mixture, wherein the Wobbe index is preferable.
Abstract:
The density measuring device serves for measuring density, ρ, of a flowable medium and comprises a measuring device electronics (ME) as well as a measuring transducer (MT) electrically connected therewith. The measuring transducer includes a measuring tube (10), an oscillation exciter (41) for exciting and maintaining oscillations and an oscillation sensor (51) for registering oscillations of the at least one measuring tube. The measuring device electronics is adapted by means of an oscillation measurement signal (s1) as well as an exciter signal (e1) to adjust a drive force effecting wanted oscillations (namely oscillations with a predetermined wanted frequency, fN) of the measuring tube. The drive force is adjusted in such a manner that during a predetermined phase control interval a phase shift angle, φN, by which a velocity response, VN, of the measuring tube Is phase shifted relative to a wanted force component, FN, of the drive force, is less than −20° and greater than −80°, and/or the wanted frequency has a frequency value, which corresponds to greater than 1.00001 times, equally as well less than 1.001 times, a frequency value of an instantaneous resonant frequency of the measuring tube. Moreover, the measuring device electronics is adapted based on the oscillation measurement signal (s1) present during the phase control interval to ascertain at least one frequency measured value, Xf, which represents the wanted frequency for the phase control interval, as well as also with application of the frequency measured value, Xf, to generate a density measured value, Xρ, representing a density, ρ.
Abstract:
The present disclosure relates to a method for determining the methane index of a hydrocarbon-containing combustion gas mixture which has natural gas or biogas, having the steps: flowing the gas mixture through a measuring assembly; determining a first value of a first measurement variable related to a viscosity of the gas mixture; determining a second value of a second measurement variable related to a density of the gas mixture; determining a pressure value of the gas mixture, said pressure value belonging to the first value and the second value; determining a temperature value of the gas mixture, said temperature value belonging to the first value and the second value; and determining the methane index as a function of the first value, the second value, the pressure value, and the temperature value.