Abstract:
Disclosed is a multi-wavelength transmission apparatus including a wavelength divider to divide an optical signal by wavelength and output wavelength-divided optical signals to different positions, the optical signal being received from an optical circulator, a first cylindrical lens to diverge the wavelength-divided optical signals along an X axis and a Y axis and allow the wavelength-divided optical signals to be promoted in a Z-direction, a second cylindrical lens to diverge optical signals output from the first cylindrical lens along the X axis and the Y axis and allow the output optical signals to be promoted in the Z-direction, and a reflector to reflect optical signals output from the second cylindrical lens toward the second cylindrical lens, the first cylindrical lens being identical in shape to the second cylindrical lens and rotated by 90° in an Y-axial direction based on the second cylindrical lens.
Abstract:
Provided is a multi-channel optical subassembly. The multi-channel optical subassembly includes a first sub-mount including first and second areas having different thicknesses, a photoelectric device provided in the first area, a circuit board provided in the second area, a second sub-mount inserted into and fastened to the first guide hole and coupled to the first sub-mount, an optical fiber array fixed to the second sub-mount to provide a path through which light emitted from the photoelectric device is received or transferred, and a micro-lens array mounted on the second sub-mount. The first guide hole is provided in one of the first and second areas. The micro-lens array includes a lens collecting the light between the photoelectric device and the optical fiber array.
Abstract:
Provided is an apparatus of recognizing optical connector connection including an IC tag connection unit configured to provide bus power and detect whether the optical connector is connected to an optical adapter, an IC tag configured to store an IC tag ID uniquely given to the optical connector, which is connected to a corresponding optical cable, and to receive the bus power to be driven for bus communication, and an IC tag ID obtaining unit configured to obtain the IC tag ID stored in the IC tag through the IC tag connection unit, when the optical connector is connected to the optical adapter.
Abstract:
An optical network system for controlling a passive optical network (PON) in which at least one symmetric optical subscriber terminal and at least one asymmetric optical subscriber terminal coexist is provided.