Abstract:
Disclosed is a magnetically inductive flowmeter comprising: a measuring tube; a magnet system having a coil system comprising a coil and a coil core within the coil, wherein the magnet system produces a magnetic field perpendicular to the measuring tube; at least two measuring electrodes for sensing an electrical voltage induced in the medium; and a field guide to guide the magnetic field between a side of the coil far from the measuring tube and a side of the measuring tube far from the coil, wherein the magnet system has a pole shoe to lead the magnetic field between the measuring tube and the field guide, wherein the pole shoe has a folded sheet metal piece, the field guide has a folded sheet metal piece, and the pole shoe and the field guide are magnetically and mechanically in contact in an interior of the first coil.
Abstract:
A magneto inductive, flow measuring device comprising a measuring tube and at least one magnet system arranged on the measuring tube. The magnet system has two coil systems, which lie opposite one another on or in the measuring tube, and each coil system includes at least one pole shoe. A first of the two coil systems is connected via at least one flux return, sheet metal length with the second or an additional coil system, and wherein each of the at least two coil systems has at least two coils, which are arranged peripherally distributed relative to the measuring tube on the pole shoe.
Abstract:
A magneto inductive, flow measuring device comprising a measuring tube and at least one magnet system arranged on the measuring tube. The magnet system has two coil systems, which lie opposite one another on or in the measuring tube, and each coil system includes at least one pole shoe. A first of the two coil systems is connected via at least one flux return, sheet metal length with the second or an additional coil system, and wherein each of the at least two coil systems has at least two coils, which are arranged peripherally distributed relative to the measuring tube on the pole shoe.
Abstract:
A magnetically inductive flow measuring probe comprises a housing that is adapted to be exposed to the medium; two measuring electrodes arranged in a housing end section for forming a galvanic contact with the medium and for sensing a voltage induced in the flowing medium; and a means for producing a magnetic field passing through the housing end section. The means includes a coil arrangement and a field guide body. The field guide body comprises two field guide body legs connected with a coil core, extending to a front section of the housing and adapted to serve as field guideback. Orthogonal projections of the measuring electrodes and the field guide body onto a cross sectional plane are disjoint.
Abstract:
A magnetic-inductive flow meter includes: a housing; a first and a second measurement electrode in galvanic contact with a flowing medium in a pipe; a magnetic field-generating device positioned in the housing and including a measurement circuit configured to determine a first measurement variable, and wherein measurement values of the first measurement variable are measured between two measurement electrodes or at a measurement electrode in relation to a reference potential; and an evaluation circuit configured to determine a Reynolds number and/or a kinematic viscosity value of the medium using measurement values of the first measurement variable and of a second measurement variable, which differs from the first measurement variable, wherein the measurement electrodes are positioned such that, during a test measurement, quotients of current measurement values of the first and of the second measurement variable correspond bijectively with the Reynolds number of the medium in the pipe.
Abstract:
A magnetically inductive flow measuring probe includes a housing; at least one measuring electrode for forming a galvanic contact with the medium and for tapping an induced voltage in the medium; a device for generating a magnetic field, wherein the device is arranged in the housing, wherein the device comprises a field guide assembly and a coil arrangement, wherein the field guide assembly functions as a sensor electrode for capacitively determining and/or monitoring a fill level of the medium in the tube line or the measuring tube. The present disclosure also relates to a method for determining a fill level of a medium in a measuring tube or in a tube line using the magnetically inductive flow measuring device.
Abstract:
A magnetically inductive flow measuring probe comprises a housing that is adapted to be exposed to the medium; two measuring electrodes arranged in a housing end section for forming a galvanic contact with the medium and for sensing a voltage induced in the flowing medium; and a means for producing a magnetic field passing through the housing end section. The means includes a coil arrangement and a field guide body. The field guide body comprises two field guide body legs connected with a coil core, extending to a front section of the housing and adapted to serve as field guideback. Orthogonal projections of the measuring electrodes and the field guide body onto a cross sectional plane are disjoint.
Abstract:
A magnetically inductive flow meter includes a housing; at least two measuring electrodes for forming a galvanic contact with the medium and for tapping an induced voltage in the medium; a device for generating a magnetic field, wherein the device is arranged in the housing, wherein the device comprises a field guiding assembly and a coil arrangement, wherein the field guiding assembly functions as a sensor electrode for capacitively determining and/or monitoring at least one process variable, in particular a fill level of the medium in the tube line or the measuring tube. The present disclosure also relates to a method for determining a fill level of a medium in a measuring tube or in a tube line using the magnetically inductive flow measuring device.