Abstract:
Disclosed are a method and a device for low latency communication in a communication system. An operation method of a base station comprises the steps of: transmitting first scheduling information of data units, transmitted through A sections in subframe #n, to a terminal through a first control channel in subframe #n; transmitting the data units to the terminal through the A sections; and transmitting second scheduling information of data unit(s), transmitted through B section(s) in subframe #(n+k) following subframe #n, to the terminal through a second control channel in subframe #(n+k). Therefore, the performance of the communication system can be improved.
Abstract:
Disclosed are a frame transmission method using a selective beamforming and a communication apparatus to perform the frame transmission method. The communication apparatus may determine a beamforming matrix based on classification information in which a plurality of subcarriers used for communication is classified into a plurality of frequency units, may map a long training field (LTF) sequence to the beamforming matrix, and transmit a beamforming training (BF-T) frame including the mapped LTF sequence to a plurality of stations, may receive, from the plurality of stations having receiving the BF-T frame, feedback information generated based on a reception strength of the BF-T frame, and may allocate frequency units to data frames to be transmitted to the plurality of stations based on the feedback information, and transmit the data frames using the allocated frequency units. The reception strength of the BF-T frame may be determined at each station for each frequency unit.
Abstract:
An operation method of a terminal in a communication system may include receiving bandwidth part (BWP) change information from a base station in a BWP i; changing an operation BWP of the terminal from the BWP i to a BWP j even when a transmission and reception procedure of first data in the BWP i is not completed at a BWP changing point indicated by the BWP change information; and performing a data transmission and reception procedure of second data in the BWP j, wherein the BWP i and the BWP j are different BWPs, and i and j are different integers.
Abstract:
Disclosed are a frame transmission method and a communication device performing the same. The communication device transmits a null data packet (NDP)-announcement (NDP-A) including information on a plurality of communication devices participating in interference alignment and transmits an NDP including a common signal field and a common training field commonly applied to the plurality of communication devices.
Abstract:
A device-to-device (D2D) communication method, performed by a receiving D2D terminal, may comprise receiving D2D data from a transmitting D2D terminal; generating feedback information for the D2D data; and receiving information on a first resource for transmission of the feedback information from a base station, and transmitting the feedback information to the transmitting D2D terminal through the first resource, wherein the information on the first resource is received without an explicit scheduling request (SR) to the base station.
Abstract:
An operation method of a terminal in a communication system includes receiving bandwidth part (BWP) change information from a base station in a BWP i; changing an operation BWP of the terminal from the BWP i to a BWP j even when a transmission and reception procedure of first data in the BWP i is not completed at a BWP changing point indicated by the BWP change information; and performing a data transmission and reception procedure of second data in the BWP j, wherein the BWP i and the BWP j are different BWPs, and i and j are different integers.
Abstract:
An operation method of a terminal in a non-orthogonal multiple access (NOMA) based communication system includes receiving information on a NOMA resource sequence allocated by a base station from the base station; and transmitting data to the base station by using a NOMA resource indicated by the information on the NOMA resource sequence in each data symbol or each data symbol group. Also, the NOMA resource sequence may indicate at least one NOMA resource in a NOMA resource set.
Abstract:
A transmitter in a mobile communication system configures a short transmission time interval (TTI) using some transmission symbols in a subframe including a plurality of transmission symbols, multiplexes and transmits a reference signal and some of transmission data in a first symbol of the transmission symbols having the short TTI, and transmits the remainder of the transmission data in the remaining symbols except the first symbol.
Abstract:
Provided is a data communication method performed at a transmission node, the method including collecting a node list including nodes communicable with the transmission node, exchanging the node list with each of the communicable nodes, determining an allowance of a space recycling transmission to a reception node by determining that the transmission node is a corresponding node as an exposed node in response to an occurrence of a clear-to-send (CTS) timeout, and transmitting data to the reception node based on a result of determining the allowance of the space recycling transmission.
Abstract:
A method of a first training node may comprise: performing training on a first two-sided AI/ML model using a raw training data set collected for CSI feedback; generating a sequential training data set for sequential training on the first two-sided AI/ML model; performing pruning on the sequential training data set to obtain a reduced sequential training data set; and transmitting, to a second training node, two-sided AI/ML training data information including at least one of the reduced sequential training data set or sequential training data configuration information.