SEAMLESS MULTI-CLOUD ROUTING AND POLICY INTERCONNECTIVITY

    公开(公告)号:US20220239559A1

    公开(公告)日:2022-07-28

    申请号:US17719792

    申请日:2022-04-13

    Abstract: Technologies for multi-cloud routing and policy interconnectivity are provided. An example method can include assigning different sets of data plane routers to data plane traffic associated with different address spaces in a cloud site of a multi-cloud fabric to yield a distributed mapping of data plane traffic and data plane routers. The method can further include providing, to an on-premises site in the multi-cloud fabric, routing entries from a control plane router on the cloud site, the routing entries reflecting the distributed mapping and identifying, for each address space, which data plane router handles data plane traffic for that address space; and when a data plane router is deployed at the cloud site, providing, to the on-premises site, updated routing information from the control plane router, the updated routing information identifying the data plane router as a next hop for data plane traffic associated with a respective address space.

    Seamless multi-cloud routing and policy interconnectivity

    公开(公告)号:US11329876B2

    公开(公告)日:2022-05-10

    申请号:US17244941

    申请日:2021-04-29

    Abstract: Technologies for multi-cloud routing and policy interconnectivity are provided. An example method can include assigning different sets of data plane routers to data plane traffic associated with different address spaces in a cloud site of a multi-cloud fabric to yield a distributed mapping of data plane traffic and data plane routers. The method can further include providing, to an on-premises site in the multi-cloud fabric, routing entries from a control plane router on the cloud site, the routing entries reflecting the distributed mapping and identifying, for each address space, which data plane router handles data plane traffic for that address space; and when a data plane router is deployed at the cloud site, providing, to the on-premises site, updated routing information from the control plane router, the updated routing information identifying the data plane router as a next hop for data plane traffic associated with a respective address space.

    System and method for providing scalable flow monitoring in a data center fabric

    公开(公告)号:US11233721B2

    公开(公告)日:2022-01-25

    申请号:US16808768

    申请日:2020-03-04

    Abstract: Disclosed is a method that includes calculating, at a collector receiving a data flow and via a hashing algorithm, all possible hashes associated with at least one virtual attribute associated with the data flow to yield resultant hash values. Based on the resultant hash values, the method includes computing a multicast address group and multicasting the data flow to n leafs based on the multicast address group. At respective other collectors, the method includes filtering received sub-flows of the data flow based on the resultant hashes, wherein if a respective hash is owned by a collector, the respective collector accepts and saves the sub-flow in a local switch collector database. A scalable, distributed netflow is possible with the ability to respond to queries for fabric-level netflow statistics even on virtual constructs.

    Isolation and segmentation in multi-cloud interconnects

    公开(公告)号:US11082258B1

    公开(公告)日:2021-08-03

    申请号:US16742604

    申请日:2020-01-14

    Abstract: Techniques for maintaining isolation and segregation for network paths through multi-cloud fabrics using VRF technologies. The techniques include running virtual routers in a cloud network that connect the cloud network to an on-premises network using a network overlay that preserves VRF information in data packets. Further, the virtual routers connect to individual gateways in the cloud network using tunnels, and each individual gateway is connected to multiple VPCs without overlapping subnets. The virtual routers may assign a sink VRF to each gateway connection that can be used to perform source-IP based VRF selection by mapping source IP addresses in each tunnel connection to appropriate VRFs for the source IP addresses. In this way, virtual routers may use sink VRFs to translate into the VRF information for data packets from the VPCs via source-IP based lookup, and use the corresponding VRF route table to determine next hops for data packets.

    Isolation and Segmentation in Multi-Cloud Interconnects

    公开(公告)号:US20210218598A1

    公开(公告)日:2021-07-15

    申请号:US16742604

    申请日:2020-01-14

    Abstract: Techniques for maintaining isolation and segregation for network paths through multi-cloud fabrics using VRF technologies. The techniques include running virtual routers in a cloud network that connect the cloud network to an on-premises network using a network overlay that preserves VRF information in data packets. Further, the virtual routers connect to individual gateways in the cloud network using tunnels, and each individual gateway is connected to multiple VPCs without overlapping subnets. The virtual routers may assign a sink VRF to each gateway connection that can be used to perform source-IP based VRF selection by mapping source IP addresses in each tunnel connection to appropriate VRFs for the source IP addresses. In this way, virtual routers may use sink VRFs to translate into the VRF information for data packets from the VPCs via source-IP based lookup, and use the corresponding VRF route table to determine next hops for data packets.

    Layer 2 mobility for hybrid multi-cloud deployments without host-overlay

    公开(公告)号:US11057350B2

    公开(公告)日:2021-07-06

    申请号:US16426336

    申请日:2019-05-30

    Abstract: Technologies for extending a subnet across on-premises and cloud-based deployments are provided. An example method may include creating a VPC in a cloud for hosting an endpoint being moved from an on-premises site. For the endpoint to retain its IP address, a subnet range assigned to the VPC, based on the smallest subnet mask allowed by the cloud, is selected to include the IP address of the endpoint. The IP addresses from the assigned subnet range corresponding to on-premises endpoints are configured as secondary IP addresses on a Layer 2 (L2) proxy router instantiated in the VPC. The L2 proxy router establishes a tunnel to a cloud overlay router and directs traffic destined to on-premises endpoints, with IP addresses in the VPC subnet range thereto for outbound transmission. The cloud overly router updates the secondary IP addresses on the L2 proxy router based on reachability information for the on-premises site.

    System and method for self-healing of application centric infrastructure fabric memory

    公开(公告)号:US11055159B2

    公开(公告)日:2021-07-06

    申请号:US16393067

    申请日:2019-04-24

    Abstract: Disclosed is a method that includes obtaining a list of processes in an application centric infrastructure fabric, sorting the list of processes according to an amount of memory increase associated with each respective process in the list of processes to yield a sorted list, selecting a group of processes from the sorted list and collecting a respective live process core for each process in the group of processes without pausing or killing any process in the group of processes. The method includes applying an offline leak detection tool to each process in the group of processes to yield a list of leaked memory addresses for a given process of the group of processes and transmitting a message to the given process with the list of leaked memory addresses, whereby the given process calls a function to release leaked memory associated with the given process as identified in the message.

    System and method for providing scalable flow monitoring in a data center fabric

    公开(公告)号:US10601693B2

    公开(公告)日:2020-03-24

    申请号:US15658215

    申请日:2017-07-24

    Abstract: Disclosed is a method that includes calculating, at a collector receiving a data flow and via a hashing algorithm, all possible hashes associated with at least one virtual attribute associated with the data flow to yield resultant hash values. Based on the resultant hash values, the method includes computing a multicast address group and multicasting the data flow to n leafs based on the multicast address group. At respective other collectors, the method includes filtering received sub-flows of the data flow based on the resultant hashes, wherein if a respective hash is owned by a collector, the respective collector accepts and saves the sub-flow in a local switch collector database. A scalable, distributed netflow is possible with the ability to respond to queries for fabric-level netflow statistics even on virtual constructs.

Patent Agency Ranking