Abstract:
A communication device detects sound with a microphone to produce a sound signal representative of the sound and searches the sound signal for unique inaudible sound signatures associated with a group identifier. Each sound signature identifies a respective communication device. Each sound signature is in an audible frequency band but masked to be imperceptible. If any of the sound signatures are determined to be present in the sound signal, the communication device selects one based on predetermined criteria associated with the group identifier.
Abstract:
Presented herein are techniques for receiving media at a participant device for a conference session. The media may be transmitted to the participant device using a first transport mechanism. A command is received from a user of a participant device in a conference session to playback a portion of the conference session. A request is sent to the conference server to retransmit a recording of the portion of the conference session requested for playback. Data is received for the recording of the portion of the conference session transmitted from the conference server using a second transport mechanism, wherein the second transport mechanism is a higher reliability transport mechanism than the first transport mechanism.
Abstract:
In one embodiment, an echo canceller configured to cancel echo in a wideband voice conference is provided. A double-talk condition may be when a plurality of users are speaking substantially simultaneously. When a double-talk condition is detected in the wideband conference, a high-frequency process is enabled and used to process signals in the high band to reduce echo. Accordingly, echo in the high band may not be produced by end devices being used by the users' speaking. Also, the users speaking have the echo cancelled in the low band and substantial echo does not result. This results in the users speaking experiencing the conference in the narrowband. The other users that are not speaking, however, continue to receive wideband signals. The users not speaking also continue to have echo cancellation performed for the high band and low band because these users are not speaking and thus attenuation of their voices is not a consideration.
Abstract:
In an example embodiment, a control connection is introduced between an adaptive jitter buffer (AJB) and an adaptive bulk delay (ABD) buffer of an echo canceller (ECAN) in an Internet Protocol (IP) conference bridge. The control connection allows the AJB to control the amount of delay inserted by the ABD in the ECAN convolution processor (CP) signal path. The adjustment in ABD delay restores the time alignment of the ECAN internal echo estimate and offsets variations in echo tail delay introduced by network induced AJB delay changes. Time-invariance is preserved in the echo tail path.
Abstract:
A method is described and in one embodiment includes receiving at a first node in a communications network a Session Traversal Utilities for Network Address Translation (“STUN”) message associated with a first flow, wherein the STUN message comprises a flow attribute including corresponding to the first flow; analyzing the flow attribute at the first node; setting policy corresponding to the first flow in the network based on the analyzing, wherein setting the policy includes using the flow attribute of the STUN message to configure a network path for the first flow in the communications network; and forwarding the STUN message to a next network node.
Abstract:
The present technology can receive audio segments from sources within one or more conference room, and can create audio fingerprints from the sources. The audio fingerprints are optimized for audio in conference room environments, which include distortions from room impulse responses, and various encoding used by telecommunication networks. In some embodiments, when two audio segments are matched, a user equipment can be instructed to mute its speakers to avoid feedback. In some embodiments, when two audio segments are matched, a user equipment can be given instructions to join a conference taking place in the room in when the audio segment originated.
Abstract:
The present technology pertains to a voice assistant configured for use in a meeting room environment where the voice assistant can learn speech parameters for a meeting taking place in the meeting room environment. The voice assistant can use the speech parameters to deliver proactive notifications in a manner that is less intrusive to the conversation in the meeting.
Abstract:
Doppler correlators are configured to receive samples of a signal sampled based on a frequency. Each Doppler correlator includes successive butterfly elements. Each butterfly element includes cross-coupled first and second branches that include a sample delay that doubles for each successive butterfly element, and a sample inversion selectively placed in one of the first and second branches to encode into the successive butterfly elements of each Doppler correlator the same code sequence. Each Doppler correlator is configured with a respective phase rotation that varies across the Doppler correlators. Each Doppler correlator is configured to correlate the samples against the code sequence and apply the respective phase rotation to the samples as the samples are shifted through the successive butterfly elements, to produce respective correlation results from each Doppler correlator centered on a respective frequency offset from the frequency that varies across the Doppler correlators based on the phase rotations.
Abstract:
Time-offset, time-overlapping signals are received. The signals each include a pilot code, and at least some of the signals each include a user code occupying a time slot time-synchronized to a respective pilot code. Time-offset cross-correlation peaks for respective ones of the pilot codes are generated, each cross-correlation peak indicating a respective one of the time slots. For each time slot a respective projection vector including user code projections each indicative of whether a respective user code of known user codes is present in the time slot is generated. Particular ones of the projection vectors are selectively combined into an aggregate projection vector of aggregate user code projections, such that the aggregate projection vector has a signal-to-noise ratio (SNR) greater than the projection vectors individually. The user code is selected from among the known user codes based on the aggregate user code projections of the aggregate projection vector.
Abstract:
A method is described and in one embodiment includes receiving at a first node in a communications network a message associated with a first flow, wherein the message comprises a flow treatment attribute including metadata indicative of how the first flow should be treated in the network; analyzing the flow treatment attribute at the first node; setting policy for treatment of the flow in the network based on the analyzing; and forwarding the message to a next network node.