Abstract:
A high strength retention loops for a wearable band of an electronic device and method of forming the retention loop. The retention loop of the wearable band may include a bottom layer, a tensile member encircling the bottom layer, and a top layer positioned adjacent to and substantially encircling the bottom layer and the tensile member. A distinct retention loop may include a single piece of folded leather material having an exterior portion, and two interior portions positioned adjacent the outer portion. The distinct retention loop may also include a tensile member positioned between the exterior portion and the two interior portions.
Abstract:
Embodiments are directed to a wearable device including first and second band straps attached to a device body. A buckle mechanism is configured to attach the first band strap to the second band strap and includes a spring bar attached to an end of the first band strap and a buckle loop engaged to the spring bar. A tang is configured to engage a hole formed in the second band strap to secure the first band strap to the second band strap. The tang defines an aperture that receives the spring bar and is configured to pivot about an offset axis that is offset with respect to an axis of the bar. As the tang is rotated, a restoring force biases the tang toward the buckle loop.
Abstract:
This is directed to a cable structure for use with an electronic device. The cable structure can include one or more conductors around which a sheath is provided. To prevent the cable structure from tangling, the cable structure can include a core placed between the conductors and the sheath, where a stiffness of the core can be varied along different segments of the cable structure to facilitate or hinder bending of the cable structure in different areas. The size and distribution of the stiffer portions can be selected to prevent the cable from forming loops. The resistance of the core to bending can be varied using different approaches including, for example, by varying the materials used in the core, varying a cross-section of portions of the core, or combinations of these.
Abstract:
A magnetic attachment mechanism and method is described. The magnetic attachment mechanism can be used to releasably attach at least two objects together in a preferred configuration without fasteners and without external intervention. The magnetic attachment mechanism can be used to releasably attach an accessory device to an electronic device. The accessory device can be used to augment the functionality of usefulness of the electronic device.
Abstract:
A system for carrying or using a device includes the device and at least one attachment apparatus. The device may include at least one attachment element. The attachment apparatus may include a length of material and at least one attachment point arranged on an end of the length of material. The at least one attachment point may include at least one magnetic feature configured to attach and detach the device and the length of material. The material can include but is not limited to cloth, metallic (magnetic and non-magnetic), fibrous material, and so forth.
Abstract:
This is directed to a case for securing and protecting an electronic device. The case can include a cover connected to a pouch by a hinge such that the cover can be overlaid over a device interface (e.g., a device display). The case can be constructed by layering and combining several types of materials, including for example materials having resistant outer surfaces, materials limiting the deformation of the case, materials providing a soft surface to be placed in contact with the device, and rigid materials for defining a structure of the case. In some embodiments, the case can include a tab that allows a user to fold open the cover of the case to form a triangular prism. The prism can be placed on any of its surfaces such that the device can be oriented towards a user at particular angles (e.g., a typing-specific orientation and a media playback orientation).
Abstract:
A band for a wearable device includes first and second band links. The first band link includes one or more magnetic pins and the second band link includes one or more magnets and one or more apertures. In a first position, the first and second band links mechanically and magnetically couple by the magnet pulling the magnetic pin into the aperture. In a second position, the first and second band links mechanically and magnetically decouple by the magnetic pin being forced from the aperture. In this way, the band links may be easily and quickly coupled to and/or decoupled from each other.
Abstract:
A wearable band includes a woven material having two or more stretch regions. The different stretch regions can be formed by varying the tension on subsets of the warp threads, the weft threads, or both the warp and weft threads. A system for producing the woven material can include two or more tension control devices operably connected to a processing device. Each tension control device is configured to adjust the amount of tension in a respective subset of threads (e.g., warp threads) in the woven material during a weaving operation. The processing device is configured to select thread tension patterns for the subsets of threads used during the weaving operation. Each thread tension pattern includes tension settings for the subsets of threads, where at least one tension setting in one thread tension pattern differs from the tension settings in the other tension patterns.
Abstract:
A band for a wearable device includes first and second band links. The first band link includes one or more magnetic pins and the second band link includes one or more magnets and one or more apertures. In a first position, the first and second band links mechanically and magnetically couple by the magnet pulling the magnetic pin into the aperture. In a second position, the first and second band links mechanically and magnetically decouple by the magnetic pin being forced from the aperture. In this way, the band links may be easily and quickly coupled to and/or decoupled from each other.
Abstract:
One automated process for evenly applying a thin layer within a device housing includes applying a vacuum hold from a curved surface applicator to the thin layer, pressing the thin layer against the device housing with the applicator, wherein said pressing includes applying pressure from the center of the applicator first and then radially expanding said pressure, and pressing the cylindrical outer housing against an outer region of the thin layer to effect a hard pressed application at the outer surface thereof.