Abstract:
A wireless local area network (WLAN) station (STA) reports, with a medium access control (MAC) frame, a buffer status of an urgent traffic identifier (TID) to a second STA. In some embodiments, the second STA is also an access point (AP). The delay in reporting is reduced by providing a buffer status report for the urgent TID in a data frame being transmitted to carry data for a current TID. The buffer status report, in some embodiments, provides the value of the urgent TID. In some embodiments, the buffer status report provides an indication of the amount of data in a buffer corresponding to the urgent TID. In some embodiments, the buffer status report is based on an aggregated measure of more than one buffer with data awaiting transmission. The transmission of the MAC frame, in some embodiments, is unsolicited.
Abstract:
Managing orthogonal frequency division multiple access (OFDMA) uplink acknowledgements is described herein. An example system can include an interface circuit to generate a physical layer convergence protocol data unit (PPDU) including a physical layer preamble, a first sub-channel field corresponding to a first station, and a second sub-channel field corresponding to a second station. The first sub-channel field can carry a first unicast trigger corresponding to the first station, and the second sub-channel field can carry a second unicast trigger corresponding to the second station. The interface circuit can also transmit the PPDU to the first and second stations.
Abstract:
Embodiments include a method, computer program product, and system for grouping electronic devices into contention groups to reduce uplink Orthogonal Frequency-Division Multiple Access (OFDMA) random access (OFDMA-RA) collisions. An access point may explicitly assign an electronic device to a contention group, or the electronic device may implicitly determine an assignment to the contention group. To explicitly assign a device to a contention group, the access point may randomly assign or assign based on a criteria of the electronic device. Examples of criteria include an association identifier (AID), a traffic type/quality of service (QoS) category, a power saving preference, and an association status. The electronic device may implicitly determine a contention group assignment based on the total number of contention groups. The electronic device may use the explicitly or implicitly assigned contention group number to determine whether the electronic device may contend for a given trigger frame random access (TF-R) frame.
Abstract:
In order to flexibly manage and broadcast content to electronic devices in a multicast group, a multicast group management protocol allows one or more multicast group masters to be specified. In addition to controlling membership in the multicast group, a multicast group master can define or specify a multicast session, in which content from one or more sources is broadcast to at least a subset of the electronic devices or sinks in the multicast group. The multicast group management protocol supports concurrent broadcasts of content to different multicast sessions. Moreover, the broadcasts in the different multicast sessions may have different: priorities, encoding techniques, quality-of-service policies, reliability, and/or number of parity bits. For example, the different encoding techniques may include different layers in H.264 Scalable Video Coding. Alternatively or additionally, the different number of parity bits may be associated with application layer forward error correction.
Abstract:
Some embodiments of this disclosure include apparatuses and methods for implementing discovery frames and group addressed frames communication. For example, some embodiments relate to a method including generating a first frame to be transmitted to a first electronic device. An association identifier (AID) value of the first frame is set to a first value to indicate that the first frame is an individually addressed frame addressed to the first electronic device. The method further includes generating a second frame to be transmitted to a group of one or more electronic devices. An AID value of the second frame is set to a second value different from the first value. The method also includes transmitting the first frame and the second frame.
Abstract:
The subject technology provides for block acknowledgment requests and block acknowledgment frames that can be used in conjunction with multicast transmissions that include multiple concurrent streams. Thus, the subject technology reduces the overhead associated with multicast transmissions that include multiple concurrent streams by aggregating the acknowledgments across multiple streams into a block acknowledgment, thereby increasing the effective throughput of such transmissions and overall network efficiency.
Abstract:
Some embodiments of this disclosure include apparatuses and methods for implementing discovery frames and group addressed frames communication. For example, some embodiments relate to a method including generating a first frame to be transmitted to a first electronic device. An association identifier (AID) value of the first frame is set to a first value to indicate that the first frame is an individually addressed frame addressed to the first electronic device. The method further includes generating a second frame to be transmitted to a group of one or more electronic devices. An AID value of the second frame is set to a second value different from the first value. The method also includes transmitting the first frame and the second frame.
Abstract:
The subject technology provides a receiving device with an indication of a last packet being transmitted in a group of packets. In this manner, the receiving device can enter a low power mode after determining that the last packet in the group of packets has been received (e.g., in addition to all prior packets in the group). For example, in the subject system a transmitting device may provide an indication of the sequence number of a last packet in the group, such as by inserting the indication into a header of one or more packets in the group of packets. In one or more implementations, each packet may include a sequence number, thus the sequence number of the last packet in the group may be the highest sequence number across the group.
Abstract:
A basic bandwidth wireless local area network (WLAN) device or station (STA) is assigned to a secondary channel. The basic bandwidth STA may be a 20 MHz STA. On the secondary channel, the basic bandwidth STA operates in a wideband mode recovering received data transmitted from an access point (AP) as part of a high bandwidth physical layer protocol data unit (PPDU). The STA and the AP can be members of a basic service set (BSS). The high bandwidth PPDU may be, for example, a 40 MHz, 60 MHz, or 80 MHz PPDU. Once on the secondary channel, the STA relies on the AP to perform channel sensing and scheduling activities, thus reducing power consumption at the STA and increasing the efficiency of the BSS. Several signaling formats are provided for indicating the secondary channel that the STA is assigned to or requests to move to.
Abstract:
An access point transmits a trigger frame to a set of electronic devices in a wireless local area network (WLAN). In response to one or more requests to send data, the access point transmits the trigger frame, which includes information specifying an ordered list of electronic devices in the set of electronic devices that are allowed to transmit, and that groups the electronic devices in the ordered list of electronic devices into a first subset of the electronic devices and a second subset of the electronic devices. Subsequently, the access point sequentially receives one or more frames from the ordered list of electronic devices, where a first group of the frames received from at least some of the first subset of the electronic devices use single-user transmission and a second group of frames received from at least some of the second subset of the electronic devices use multi-user transmission.