Abstract:
Techniques for speech processing using a deep neural network (DNN) based acoustic model front-end are described. A new modeling approach directly models multi-channel audio data received from a microphone array using a first model (e.g., multi-channel DNN) that takes in raw signals and produces a first feature vector that may be used similarly to beamformed features generated by an acoustic beamformer. A second model (e.g., feature extraction DNN) processes the first feature vector and transforms it to a second feature vector having a lower dimensional representation. A third model (e.g., classification DNN) processes the second feature vector to perform acoustic unit classification and generate text data. These three models may be jointly optimized for speech processing (as opposed to individually optimized for signal enhancement), enabling improved performance despite a reduction in microphones and a reduction in bandwidth consumption during real-time processing.
Abstract:
A system configured to process speech commands may classify incoming audio as desired speech, undesired speech, or non-speech. Desired speech is speech that is from a same speaker as reference speech. The reference speech may be obtained from a configuration session or from a first portion of input speech that includes a wakeword. The reference speech may be encoded using a recurrent neural network (RNN) encoder to create a reference feature vector. The reference feature vector and incoming audio data may be processed by a trained neural network classifier to label the incoming audio data (for example, frame-by-frame) as to whether each frame is spoken by the same speaker as the reference speech. The labels may be passed to an automatic speech recognition (ASR) component which may allow the ASR component to focus its processing on the desired speech.
Abstract:
A system configured to process speech commands may classify incoming audio as desired speech, undesired speech, or non-speech. Desired speech is speech that is from a same speaker as reference speech. The reference speech may be obtained from a configuration session or from a first portion of input speech that includes a wakeword. The reference speech may be encoded using a recurrent neural network (RNN) encoder to create a reference feature vector. The reference feature vector and incoming audio data may be processed by a trained neural network classifier to label the incoming audio data (for example, frame-by-frame) as to whether each frame is spoken by the same speaker as the reference speech. The labels may be passed to an automatic speech recognition (ASR) component which may allow the ASR component to focus its processing on the desired speech.
Abstract:
Features are disclosed for spotting keywords in utterance audio data without requiring the entire utterance to first be processed. Likelihoods that a portion of the utterance audio data corresponds to the keyword may be compared to likelihoods that the portion corresponds to background audio (e.g., general speech and/or non-speech sounds). The difference in the likelihoods may be determined, and keyword may be triggered when the difference exceeds a threshold, or shortly thereafter. Traceback information and other data may be stored during the process so that a second speech processing pass may be performed. For efficient management of system memory, traceback information may only be stored for those frames that may encompass a keyword; the traceback information for older frames may be overwritten by traceback information for newer frames.
Abstract:
Features are disclosed for performing acoustic echo cancellation using random noise. The output may be used to perform speech recognition. Random noise may be introduced into a reference signal path and into a microphone signal path. The random noise introduced into the microphone signal path may be transformed based on an estimated echo path and then combined with microphone output. The random noise introduced into the reference signal path may be combined with a reference signal and then transformed. In some embodiments, the random noise in the reference signal path may be used in the absence of another reference signal, allowing the acoustic echo canceler to be continuously trained.
Abstract:
In a distributed automated speech recognition (ASR) system, speech models may be employed on a local device to allow the local device to process frequently spoken utterances while passing other utterances to a remote device for processing. Upon receiving an audio signal, the local device compares the audio signal to the speech models of the frequently spoken utterances to determine whether the audio signal matches one of the speech models. When the audio signal matches one of the speech models, the local device processes the utterance, for example by executing a command. When the audio signal does not match one of the speech models, the local device transmits the audio signal to a second device for ASR processing. This reduces latency and the amount of audio signals that are sent to the second device for ASR processing.
Abstract:
Exemplary embodiments relate to adapting a generic language model during runtime using domain-specific language model data. The system performs an audio frame-level analysis, to determine if the utterance corresponds to a particular domain and whether the ASR hypothesis needs to be rescored. The system processes, using a trained classifier, the ASR hypothesis (a partial hypothesis) generated for the audio data processed so far. The system determines whether to rescore the hypothesis after every few audio frames (representing a word in the utterance) are processed by the speech recognition system.
Abstract:
Techniques for speech processing using a deep neural network (DNN) based acoustic model front-end are described. A new modeling approach directly models multi-channel audio data received from a microphone array using a first model (e.g., multi-geometry/multi-channel DNN) that is trained using a plurality of microphone array geometries. Thus, the first model may receive a variable number of microphone channels, generate multiple outputs using multiple microphone array geometries, and select the best output as a first feature vector that may be used similarly to beamformed features generated by an acoustic beamformer. A second model (e.g., feature extraction DNN) processes the first feature vector and transforms it to a second feature vector having a lower dimensional representation. A third model (e.g., classification DNN) processes the second feature vector to perform acoustic unit classification and generate text data. The DNN front-end enables improved performance despite a reduction in microphones.
Abstract:
A speech interface device is configured to detect an interrupt event and process a voice command without detecting a wakeword. The device includes on-device interrupt architecture configured to detect when device-directed speech is present and send audio data to a remote system for speech processing. This architecture includes an interrupt detector that detects an interrupt event (e.g., device-directed speech) with low latency, enabling the device to quickly lower a volume of output audio and/or perform other actions in response to a potential voice command. In addition, the architecture includes a device directed classifier that processes an entire utterance and corresponding semantic information and detects device-directed speech with high accuracy. Using the device directed classifier, the device may reject the interrupt event and increase a volume of the output audio or may accept the interrupt event, causing the output audio to end and performing speech processing on the audio data.
Abstract:
Techniques for speech processing using a deep neural network (DNN) based acoustic model front-end are described. A new modeling approach directly models multi-channel audio data received from a microphone array using a first model (e.g., multi-channel DNN) that takes in raw signals and produces a first feature vector that may be used similarly to beamformed features generated by an acoustic beamformer. A second model (e.g., feature extraction DNN) processes the first feature vector and transforms it to a second feature vector having a lower dimensional representation. A third model (e.g., classification DNN) processes the second feature vector to perform acoustic unit classification and generate text data. These three models may be jointly optimized for speech processing (as opposed to individually optimized for signal enhancement), enabling improved performance despite a reduction in microphones and a reduction in bandwidth consumption during real-time processing.