Abstract:
There is provided an inkjet print head, including: a first substrate in which a first restrictor and a pressure chamber are formed; and a second substrate in which a manifold, a second restrictor, and a nozzle are formed, wherein the first restrictor is connected to the manifold and the second restrictor, and the second restrictor is connected to the first restrictor and the pressure chamber.
Abstract:
There are provided a piezoelectric device, an inkjet print head, and a method of manufacturing the same. The piezoelectric device includes piezoelectric ceramic powder containing 90 parts by weight or more to less than 100 parts by weight of Pb(Zr, Ti)O3, and more than 0 part by weight to 10 parts by weight or less of glass frit, based on 100 parts by weight of a piezoelectric substance composition for the piezoelectric device, wherein the glass frit contains 10 to 20 parts by weight of ZnO, based on 100 parts by weight of glass frit.
Abstract:
Provided are a high-strength, high-manganese steel wire rod having excellent cold heading quality and not requiring spheroidizing and quenching-tempering treatments during manufacturing a bolt and a method of manufacturing a bolt using the steel wire rod. The method of manufacturing a steel wire rod includes heating a steel containing 12 to 25 wt % of Mn within a temperature range of 1100° C. to 1250° C., hot rolling the heated steel within a temperature range of 700° C. to 1100° C., and cooling the hot rolled steel to a temperature of 200° C. or less and cold caliber rolling or drawing to manufacture a steel wire rod.
Abstract:
There is provided an inkjet print head that includes: an inkjet head plate with a plurality of head cells including ink passages where introduced ink is ejected through a nozzle by passing through a pressure chamber; and a piezoelectric actuator formed on the top of the inkjet head plate and formed at a position corresponding to the pressure chamber, wherein the area of at least one of the pressure chamber and the piezoelectric actuator is changed to make ejection characteristics of the ink ejected from the plurality of head cells uniform.
Abstract:
Disclosed are an inkjet print head and a method of manufacturing the same. An inkjet print head according to an aspect of the invention may include: an inkjet board having an ink passage therein; a cutting portion provided outside the ink passage of the inkjet board and having a cutting surface created by separation into head chip units of the inkjet board; and an auxiliary cutting portion provided from one surface of the cutting portion inwardly in a thickness direction of the inkjet board, and assisting the separation into head chip units of the inkjet board.
Abstract:
A piezoelectric inkjet printhead includes a manifold, a chamber array including a plurality of chambers in connection with the manifold and arranged along at least one side of the manifold, a vibrating plate to cover the plurality of chambers, and a plurality of piezoelectric actuators formed on the vibrating plate to change pressures of corresponding ones of the plurality of chambers by vibrating the vibrating plate. The plurality of chambers includes a plurality of pressure chambers disposed in a center portion of the chamber array and having corresponding ink ejecting nozzles, and at least two dummy chambers, one disposed on each side of the chamber array and having corresponding dummy nozzles that do not eject ink. A plurality of trenches may be formed in the vibrating plate between each of the piezoelectric actuators.
Abstract:
An inkjet printhead and a method of driving the inkjet printhead include a flow channel substrate having a pressure chamber, and a piezoelectric actuator formed on the flow channel substrate to apply a driving force to the pressure chamber to eject ink. The piezoelectric actuator includes a piezoelectric layer formed on the flow channel substrate to correspond to the pressure chamber, and a plurality of common electrodes and a plurality of driving electrodes alternately arranged in a length direction of the piezoelectric layer.
Abstract:
Provided are a nozzle plate of an inkjet printhead and a method of manufacturing the same. The nozzle plate includes: a substrate including a plurality of nozzles; and a plurality of first grooves formed on the surface of a substrate around the nozzles. In this structure, ink remaining on the surface of the nozzle plate can be efficiently removed.
Abstract:
The present invention relates to a multilayer power inductor in which sheets are charged with a soft magnetic metal alloy powder having a shape optimized along a magnetic path, pattern circuits made from conductive materials are formed on the sheets, and via holes are formed through the sheets to easily connect pattern circuits. The power inductor of the present invention is manufactured by stacking the above-described sheets into multiple layers. The sheets of the inductor of the present invention are charged with soft magnetic metal powder having a high magnetization density, and fine gaps are distributed among the powder the shape of which is optimized along a magnetic path to ensure high current superposition characteristics which allow the use of 1A to several tens of A without causing leakage flux, and ensure stable inductance to a high frequency domain of the 10 MHz band. Further, the present invention is advantageous as it provides an inductor with a thin width, a large area, high inductance and high direct current superposition characteristics.
Abstract:
An inkjet head including a plurality of restrictors to reduce crosstalk. The inkjet head includes a channel plate in which an ink channel is formed, an actuator formed on the channel plate, and an ink-supply bezel including a manifold. The ink channel includes an ink inlet to receive ink from the manifold, reservoirs to store ink received through the ink inlet, chambers filled with ink supplied from the reservoirs, nozzles to eject ink filled in the chambers, first restrictors connecting the reservoirs to the chambers, and second restrictors connecting the reservoirs to the ink inlet. Each of the reservoirs includes a first reservoir and a second reservoir that are separated by a central separation wall, and the separation wall includes a third restrictor connecting the first and second reservoirs. Therefore, crosstalk caused by a back flow of ink and transmission of a pressure wave can be prevented during ejection of ink.