Abstract:
The invention relates to methods of stabilizing glycosaminoglycans in a biological tissue (e.g. a bioprosthetic implant) in conjunction with cross-linking of protein in the tissue. The methods of the invention improve the mechanical integrity of the device and improves its stability in vivo. The invention also includes biological tissues having stabilized glycosaminoglycans and cross-linked proteins and kits for preparing such tissues.
Abstract:
The present invention relates to novel compositions comprising microspheres and/or nanospheres containing condensed polyanionic bioactive agents, such as DNA. The polyanionic bioactive agent in the microspheres and/or nanospheres is preferably condensed using a polycationic condensing agent, such as poly-L-lysine. The present invention further relates to methods for producing the microspheres and/or nanospheres containing condensed polyanionic bioactive agents.
Abstract:
The invention relates to compositions and methods for delivering a polyionic bioactive composition such as a nucleic acid to a tissue of an animal. The compositions of the invention include compositions which comprise a matrix comprising the polyionic bioactive agent and wherein at least most of the polyionic bioactive agent at the exterior portion of the matrix is present in a condensed form. The invention also includes methods of making such compositions, including particles, devices, bulk materials, and other objects which comprise, consist of, or are coated with such compositions. Methods of delivering a polyionic bioactive agent to an animal tissue are also described. The invention further includes a method of storing a nucleic acid.
Abstract:
A system for controlled release, site-specific delivery of therapeutic agents, particularly myocardial agents such as antiarrhythmic agents, comprises a biocompatible polymeric matrix with an incorporated therapeutic agent for direct placement at the epicardium. Advantageously, the dosage form can be fabricated in such a manner as to tailor the release characteristics as required by the nature of the physical condition desired to be treated. In a specific illustrative embodiment, lidocaine, an antiarrhythmic depressant, is incorporated in polyurethane by a unique method which permits drug-loading of the polymeric matrix from about 5% up to 40% by weight, with about 25% to 30% in a preferred embodiment. A novel FeCl.sub.3 catalyst causes the polyurethane to polymerize despite the presence of drug in the polymeric matrix mixture.
Abstract:
Oxidation resistant bioprosthetic tissues and oxidation resistant bioprosthetic heart valve leaflets are described. Also provided are methods for preparing the oxidation resistant bioprosthetic tissues and bioprosthetic heart valve leaflets, and methods for preventing oxidative degeneration in bioprosthetic tissues, including immobilizing covalently an effective amount of an antioxidant to the bioprosthetic tissue.
Abstract:
A treatment system includes a magnetic targeting catheter and a plurality of MNP. The MNP may include one or more magnetic field-responsive agents and one or more therapeutic agents. The catheter may include an inner shaft having at least one lumen and a fluid delivery balloon adapted to administer a fluid from the inner shaft into a space surrounding the catheter. An expandable mesh formed of a magnetizable material may surround the fluid delivery balloon. The catheter may further include one or more occlusion balloons for controlling blood flow through a vessel in which the catheter is placed. A method of treating a medical condition may include advancing a magnetic targeting catheter to a site, deploying an expandable mesh connected to the catheter, applying a magnetic field to the mesh and depositing a plurality of MNP or cells loaded with MNP near the mesh.
Abstract:
Systems and methods for magnetic targeting of therapeutic particles are provided. Therapeutic particles comprise one or more magnetic or magnetizable materials and at least one therapeutic agent. Therapeutic particles are specifically targeted using uniform magnetic fields capable of magnetizing magnetizable materials, and can be targeted to particular locations in the body, or can be targeted for capture, containment, and removal. Therapeutic particles can comprise antioxidant enzymes, and can be targeted to cells to protect the cells from oxidative damage.
Abstract:
Systems and methods for magnetic targeting of therapeutic particles are provided. Therapeutic particles comprise one or more magnetic or magnetizable materials and at least one therapeutic agent. Therapeutic particles are specifically targeted using uniform magnetic fields capable of magnetizing magnetizable materials, and can be targeted to particular locations in the body, or can be targeted for capture, containment, and removal. Also provided are bioresorbable nanoparticles prepared without the use of organic solvents, and methods for therapeutically using such bioresorbable nanoparticles.
Abstract:
A water-soluble photo-activatable polymer including: a photo-activatable group adapted to be activated by an irradiation source and to form a covalent bond between the water-soluble photo-activatable polymer and a matrix having at least one carbon; a reactive group adapted to covalently react with a biomaterial for subsequent delivery of the biomaterial to a cell; a hydrophilic group; and a polymer precursor. A composition including a monomolecular layer of the water-soluble photo-activatable polymer and a matrix having at least one carbon, wherein the monomolecular layer is covalently attached to the matrix by a covalent bond between the photo-activatable group and the at least one carbon. The composition further includes a biomaterial having a plurality of active groups, wherein the biomaterial is covalently attached to the monomolecular layer by covalent bonding between the active groups and reactive groups. Also provided is a method for delivery of a biomaterial to a cell.
Abstract:
The invention features devices, systems, and methods for targeted delivery of therapeutic agents in magnetic particle carriers to desired locations on tissue in the body. The systems and methods utilize at least one device comprising a source of magnetization, and at least one device comprising a magnetic or magnetizable material, to facilitate close tissue apposition and sealing, and to facilitate site-specific delivery of magnetic particles comprising therapeutic agents.