摘要:
An improved electrochromic device, the device incorporating an electrochromic medium that comprises at least three electroactive materials having absorption spectra that add together such that the color of the electrochromic medium can be pre-selected by individually choosing the concentrations of the at least three electroactive materials. The electrochromic medium generally maintains the pre-selected perceived color throughout its normal range of voltages when used in an electrochromic device. The at least three electroactive materials include at least one electrochemically reducible material (cathodic material), at least one electrochemically oxidizable material (anodic material) and at least one additional electroactive material which may be either an anodic or cathodic material. Thus, there are always three electroactive materials present in the medium, with at least two either being anodic or cathodic materials. The pre-selected color may be chosen from a wide variety of colors and may be, for example, red, orange, yellow, green, blue, purple. For electrochromic mirrors for motor vehicles, a presently preferred color is gray.
摘要:
A variable transmission electrochromic window including: first and second substantially transparent substrates having electrically conductive materials associated therewith; an electrochromic medium contained within a chamber positioned between the first and second substrates which includes at least one solvent, at least one anodic electroactive material, at least one cathodic electroactive material, and wherein at least one of the anodic and cathodic electroactive materials is electrochromic; and wherein the electrochromic window exhibits an Ev of less than approximately 20, and more preferably less than approximately 5, while in a low transmission state during normal daylight conditions.
摘要:
An electrical control system is disclosed for controlling a plurality of variable transmittance windows. The electrical control system comprises a master control circuit and user input circuits for supplying control signals representing transmittance levels for the variable transmission windows, and a plurality of slave window control circuits coupled to the master control circuit, user input circuits and the variable transmittance windows. Each slave window control circuit controls the transmittance of at least one of the variable transmission windows in response to control signals received from the master control circuit and/or user input circuits. Also disclosed are novel methods for the manufacture of an electrochromic device used in variable transmittance windows. Novel structural features for improving heat transfer away from the windows, shielding the window from external loads, and improving the electrical performance of the windows are also disclosed.
摘要:
A multi-cell electrochromic device comprising: first and second electrochromic device sub-assemblies which each comprise; a first substantially transparent substrate having an electrically conductive material associated therewith and second substrate having an electrically conductive material associated therewith; and an electrochromic medium contained within a chamber positioned between the first and second substrates, wherein the electrochromic medium comprises: at least one solvent; at least one anodic electroactive material; at least one cathodic electroactive material; wherein at least one of the anodic and cathodic electroactive materials is electrochromic; and wherein the first and second electrochromic device sub-assemblies are in optical alignment, and further wherein the multi-cell electrochromic device exhibits a transmittance of less than approximately 1.5% in a low transmission state.
摘要:
An electrochromic window assembly is disclosed that includes a first substrate and a second substrate that is maintained in a parallel and spaced relation from the first substrate by means of a window frame and spacer. The window assembly further includes an electrochromic device mounted within the airtight chamber formed between the first and second substrates. Electrochromic device 22 may be mounted so as to provide an air chamber between first substrate 12, which is the external substrate, and electrochromic device 22. At least one of the chambers formed between substrates 12 and 14 and electrochromic device 22 may be filled with an insulating gas such as argon. Also disclosed are novel methods for manufacture of an electrochromic device for incorporation into such a window assembly. A novel electrochromic device is also disclosed having electrical bus clips secured about the entire periphery of the electrochromic device.
摘要:
An electrochromic device comprising: a first substantially transparent substrate having an electrically conductive material associated therewith; a second substrate having an electrically conductive material associated therewith; and an electrochromic medium contained within a chamber positioned between the first and second substrates which comprises: at least one solvent; an anodic material; a cathodic material, wherein both of the anodic and cathodic materials are electroactive and at least one of the anodic and cathodic materials is electrochromic, and wherein at least one of the anodic and cathodic materials is slow-diffusing; and an electron shuttle, wherein the electron shuttle serves to decrease switching time of the electrochromic device relative to the same without the electron shuttle.
摘要:
An electrochromic window assembly is disclosed that includes a first substrate and a second substrate that is maintained in a parallel and spaced relation from the first substrate by means of a window frame and spacer. The window assembly further includes an electrochromic device mounted within the airtight chamber formed between the first and second substrates. Electrochromic device 22 may be mounted so as to provide an air chamber between first substrate 12, which is the external substrate, and electrochromic device 22. At least one of the chambers formed between substrates 12 and 14 and electrochromic device 22 may be filled with an insulating gas such as argon. Also disclosed are novel methods for manufacture of an electrochromic device for incorporation into such a window assembly. A novel electrochromic device is also disclosed having electrical bus clips secured about the entire periphery of the electrochromic device. Also disclosed is the use of steel bus clips for the electrochromic device.
摘要:
An electrochromic window assembly is disclosed that includes a first substrate and a second substrate that is maintained in a parallel and spaced relation from the first substrate by means of a window frame and spacer. The window assembly further includes an electrochromic device mounted within the airtight chamber formed between the first and second substrates. Electrochromic device 22 may be mounted so as to provide an air chamber between first substrate 12, which is the external substrate, and electrochromic device 22. At least one of the chambers formed between substrates 12 and 14 and electrochromic device 22 may be filled with an insulating gas such as argon. Also disclosed are novel methods for manufacture of an electrochromic device for incorporation into such a window assembly. A novel electrochromic device is also disclosed having electrical bus clips secured about the entire periphery of the electrochromic device. Also disclosed is the use of steel bus clips for the electrochromic device.
摘要:
Increased stability of electrochromic devices containing an electrochromic medium having two or more electroactive compounds is accomplished by establishing current limiting concentrations of electroactive compounds with the larger redox potential difference. A process for production of electrochromic devices uses targeted concentrations of electroactive materials during preparation of the electrochromic medium which results in substantially no devices being produced wherein the current is limited by an electroactive compound having a low redox potential difference.
摘要:
Coupling of anodic electrochromic compounds by a covalent bond or a bridge link which provides for electronic communication between the coupled electrochromic compounds results in coupled electrochromic compounds which exhibit greater stability as well as electrochromic activity that differs from the monomeric electrochromic compounds. Extension of the absorption spectrum into the near-infrared region of the spectrum is frequently observed. The coupled electrochromic compounds are highly suitable for use in electrochromic media used to produce electrochromic devices.