Abstract:
Devices based on metamaterial structures to guide and manipulate light, other electromagnetic radiation and acoustic waves. For example, a lens can include a metamaterial structure comprising nano structures of metallic and dielectric materials; and a plasmonic waveguide coupler formed over the metamaterial structure for coupling electromagnetic radiation to or from metamaterial structure. The metamaterial structure has an anisotropic structure and the plasmonic waveguide coupler is structured to include metal and non-metal parts to support surface plasmon polaritons and to cause different phase delays at different locations of an interface with the metamaterial structure in a way that the metamaterial structure and the plasmonic waveguide coupler effect a lens for performing a Fourier transform of the electromagnetic radiation coupled between the metamaterial structure and the plasmonic waveguide coupler.
Abstract:
According to a method of determining a size of a sample polynucleotide, a sample polynucleotide is subjected to electrophoresis in the presence of a fluorescent compound having a first fluorescence spectrum. Detection of light of the first fluorescence spectrum is indicative of the presence of the sample polynucleotide. One or more size standards are also subjected to electrophoresis, optionally in the presence of the sample polynucleotide. If more than one size standard is used, the different size standards typically have different mobilities. The size standards are generally essentially or completely free of polynucleotides. Migration coordinates, e.g., migration times, of the sample polynucleotide and size standard(s) are determined. A size of the sample polynucleotide can be determined using the migration coordinate of the sample polynucleotide and the migration coordinate(s) of the size standard(s).
Abstract:
The present invention relates to a method of determining the genotype of a sample polynucleotide having at least a first variant site. At least a portion of the sample polynucleotide is amplified to obtain first amplicons, the first amplicons including the first variant site. The first amplicons are combined with first and second different polynucleotide controls, the first and second polynucleotide controls differing by at least one base therealong, the position of the at least one differing base corresponding to the first variant site of the sample polynucleotide. A plurality of first duplexes are prepared, each of at least some of the first duplexes comprising (i) a polynucleotide strand of one of the first amplicons and (ii) a complementary polynucleotide strand of the first polynucleotide control. A plurality of second duplexes are prepared, each of at least some of the second duplexes comprising (i) a polynucleotide strand of one of the first amplicons and (ii) a complementary polynucleotide strand of the second polynucleotide control. The first and second duplexes are subjected to temperature gradient electrophoresis (TGE) to obtain first and second electrophoresis data. The genotype of the first variant site of the sample polynucleotide is determiend based on the first and second electrophoresis data.
Abstract:
A method for determining a frequency of single nucleotide polymorphism (SNP) within genomic DNA includes providing genomic DNA of each of a plurality of different organisms. The genomic DNA of each organism includes first and second portions, e.g., first and second strands. First and second amplicons are prepared from the genomic DNA of each organism. The first amplicon corresponds to the first portion of the genomic DNA and the second amplicon corresponds to the second portion of the genomic DNA. A plurality of duplexes is prepared from the first and second amplicons of the genomic DNA of each organism. At least some of the duplexes include a portion of one of the first amplicons and a portion of one of the second amplicons. The duplexes are subjected to temperature gradient electrophoresis to obtain first electrophoresis data indicative of the rate of SNP at a first location in the genomic DNA of the plurality of organisms.
Abstract:
The present invention relates to a method for determining the presence of a mutation in a first sample comprising first polynucleotides. The reference sample comprises reference polynucleotides. The first sample and a reference sample are subjected to electrophoresis in the presence of at least one intercalating dye. During electrophoresis the temperature of the first sample and the reference sample is changed by an amount sufficient to change an electrophoretic mobility of at least one of the first or reference polynucleotides. Fluorescence intensity data are obtained. The fluorescence intensity data are indicative of the presence of the first and reference polynucleotides. The data are processed to determine the presence of mutation in the first polynucleotides.