Abstract:
A method for fabricating semiconductor device is disclosed. The method includes the steps of: providing a substrate having a first region, a second region, a third region, and a fourth region; forming a tuning layer on the second region; forming a first work function metal layer on the first region and the tuning layer of the second region; forming a second work function metal layer on the first region, the second region, and the fourth region; and forming a top barrier metal (TBM) layer on the first region, the second region, the third region, and the fourth region.
Abstract:
A manufacturing method of a metal gate structure includes the following steps. First, a substrate covered by an interlayer dielectric is provided. A gate trench is formed in the interlayer dielectric, wherein a gate dielectric layer is formed in the gate trench. A silicon-containing work function layer is formed on the gate dielectric layer in the gate trench. The silicon-containing work function layer includes a vertical portion and a horizontal portion. Finally, the gate trench is filled up with a conductive metal layer.
Abstract:
A semiconductor structure comprises a first wire level, a second wire level and a via level. The first wire level comprises a first conductive feature. The second wire level is disposed on the first wire level. The second wire level comprises a second conductive feature and a third conductive feature. The via level is disposed between the first wire level and the second wire level. The via level comprises a via connecting the first conductive feature and the second conductive feature. There is a first air gap between the first conductive feature and the second conductive feature. There is a second air gap between the second conductive feature and the third conductive feature. The first air gap and the second air gap are linked.
Abstract:
A metal gate structure is provided. The metal gate structure includes a semiconductor substrate, a gate dielectric layer, a multi-layered P-type work function layer and a conductive metal layer. The gate dielectric layer is disposed on the semiconductor substrate. The multi-layered P-type work function layer is disposed on the gate dielectric layer, and the multi-layered P-type work function layer includes at least a crystalline P-type work function layer and at least an amorphous P-type work function layer. Furthermore, the conductive metal layer is disposed on the multi-layered P-type work function layer.
Abstract:
A manufacturing method of a semiconductor device comprises the following steps. First, a substrate is provided, at least one fin structure is formed on the substrate, and a metal layer is then deposited on the fin structure to form a salicide layer. After depositing the metal layer, the metal layer is removed but no RTP is performed before the metal layer is removed. Then a RTP is performed after the metal layer is removed.
Abstract:
A semiconductor device includes a substrate and a gate structure. The gate structure is disposed on the substrate, and the gate structure includes a titanium nitride barrier layer and a titanium aluminide layer. The titanium aluminide layer is disposed on the titanium nitride barrier layer, and a thickness of the titanium aluminide layer ranges from twice a thickness of the titanium nitride barrier layer to three times the thickness of the titanium nitride barrier layer.
Abstract:
An ReRAM structure includes a dielectric layer. A first ReRAM and a second ReRAM are disposed on the dielectric layer. The second ReRAM is at one side of the first ReRAM. A trench is disposed in the dielectric layer between the first ReRAM and the second ReRAM. The first ReRAM includes a bottom electrode, a variable resistive layer and a top electrode. The variable resistive layer is between the bottom electrode and the top electrode. A width of the bottom electrode is smaller than a width of the top electrode. The width of the bottom electrode is smaller than a width of the variable resistive layer.
Abstract:
An ReRAM structure includes a dielectric layer. A first ReRAM and a second ReRAM are disposed on the dielectric layer. The second ReRAM is at one side of the first ReRAM. A trench is disposed in the dielectric layer between the first ReRAM and the second ReRAM. The first ReRAM includes a bottom electrode, a variable resistive layer and a top electrode. The variable resistive layer is between the bottom electrode and the top electrode. A width of the bottom electrode is smaller than a width of the top electrode. The width of the bottom electrode is smaller than a width of the variable resistive layer.
Abstract:
A method for fabricating semiconductor device includes the steps of: providing a substrate having a first region and a second region; forming a first bottom barrier metal (BBM) layer on the first region and the second region; forming a first work function metal layer on the first BBM layer on the first region and the second region; removing the first work function metal (WFM) layer and part of the first BBM layer on the second region; and forming a diffusion barrier layer on the first WFM layer on the first region and the first BBM layer on the second region.
Abstract:
A method for modulating a work function of a semiconductor device having a metal gate structure including the following steps is provided. A first stacked gate structure and a second stacked gate structure having an identical structure are provided on a substrate. The first stacked gate structure and the second stacked gate structure respectively include a first work function metal layer of a first type. A patterned hard mask layer is formed. The patterned hard mask layer exposes the first work function metal layer of the first stacked gate structure and covers the first work function metal layer of the second stacked gate structure. A first gas treatment is performed to the first work function metal layer of the first stacked gate structure exposed by the patterned hard mask layer. A gas used in the first gas treatment includes nitrogen-containing gas or oxygen-containing gas.