Abstract:
An assembly for a turbine engine includes a case, a guide vane arrangement and a flexible seal ring. The case extends circumferentially around an axis, and includes a first seal land. The guide vane arrangement is located radially within the case, and includes a second seal land. The seal ring at least partially seals a gap between the first seal land and the second seal land. The seal ring includes a first leg and a second leg that is connected to the first leg at a corner of the seal ring. The first leg is axially engaged with the first seal land. The second leg is axially engaged with the second seal land.
Abstract:
An assembly for a turbine engine includes a case, a guide vane arrangement and a flexible seal ring. The case extends circumferentially around an axis, and includes a first seal land. The guide vane arrangement is located radially within the case, and includes a second seal land. The seal ring at least partially seals a gap between the first seal land and the second seal land. The seal ring includes a first leg and a second leg that is connected to the first leg at a corner of the seal ring. The first leg is axially engaged with the first seal land. The second leg is axially engaged with the second seal land.
Abstract:
A gas turbine engine cooling arrangement includes a component and a pedestal. The component of a gas turbine engine has a first surface and a second surface disposed opposite the first surface. The pedestal is disposed on the second surface. The pedestal has an outer surface extending along a first axis away from the second surface between a pedestal base and a pedestal top. A first lobe is defined by the outer surface and extends along an axis that is disposed parallel to the first axis.
Abstract:
An airfoil for a gas turbine engine, the airfoil includes a wall that has a leading edge and a trailing edge and at least partially defining a boundary of a leading edge cavity radially along the leading edge. A cooling jet structure is operatively associated with a portion of the wall proximate the leading edge and is configured to direct a cooling fluid tangent to the portion of the wall.
Abstract:
One exemplary embodiment of this disclosure relates to a system including an airfoil having a static portion, a moveable portion, and a seal between the static portion and the moveable portion. The seal is moveable separate from the static portion and the moveable portion.
Abstract:
A method of limiting circumferential rotation of a split-ring seal for use in a gas turbine engine includes inserting a retention block through a slot in a flange of a support structure and into a groove configured to hold a split-ring seal, and engaging an end of a split-ring seal in the groove with a surface of the retention block.
Abstract:
An airfoil structure for a gas turbine engine includes an airfoil that includes a suction side cooling circuit with at least two segments that are connected by at least one impingement passage.