Abstract:
A lead frame device may include an integral die pad member, two separate finger members, a central body portion, each of the finger members have a top and a bottom surface connected by a peripheral edge surface. The lead frame also has a first ear portion, and a second ear portion, each has an ear top surface and an ear bottom surface coplanar with the top surface and bottom surface of the central body portion. The lead frame also has a first longitudinally extending groove and second longitudinally extending groove separate the first ear portion and the second ear portion from the central portion. The first ear portion and the second ear portion each have an abutment surface.
Abstract:
A multilevel leadframe for an integrated circuit package is provided that has a plurality of lead lines formed in a first level and bond pads formed in a second level. A first set of bond pads is arranged in a first row and are separated from an adjacent bond pad by a bond pad clearance distance. A second set of bond pads is arranged in second row adjacent the first row of bond pads. Each bond pad in the second row may be connected to one of the plurality of lead lines on the first level that is routed between adjacent bond pads in the first row. Since the bond pads in the first row are on a different level then the lead lines, the bond pads may be spaced close together.
Abstract:
A semiconductor device has a leadframe with a first (401a) and a parallel second surface, and an assembly pad (410) bordered by two opposing sides, which include a plurality of through-holes (420) from the first to the second pad surface. Another pad side includes one or more elongated windows (421) between the pad surfaces. The second pad surface includes a plurality of grooves. The leadframe further has a plurality of leads (430) with opposite elongated sides castellated by indents (431). Layers (440) of bondable metals are restricted to localized areas surrounding bond spots. A semiconductor chip (450) is attached to the pad and wire-bonded (460) to the bond spots. A package (470) encapsulates the chip, wires, pad, and lead portions, and secures the leadframe into the package by filling the through-holes, windows, grooves, and indents.
Abstract:
A leadframe (100) for electronic systems comprising a first sub-leadframe (110) connected by links (150) to a second sub-leadframe (120), the first and second sub-leadframe connected by tiebars (111, 121) to a frame (130); and each link having a neck (151) suitable for bending the link, the necks arrayed in a line (170) operable as the axis for bending the second sub-leadframe towards the first sub-leadframe with the necks operable as rotation pivots.
Abstract:
A semiconductor device has a leadframe with a first (401a) and a parallel second surface, and an assembly pad (410) bordered by two opposing sides, which include a plurality of through-holes (420) from the first to the second pad surface. Another pad side includes one or more elongated windows (421) between the pad surfaces. The second pad surface includes a plurality of grooves. The leadframe further has a plurality of leads (430) with opposite elongated sides castellated by indents (431). Layers (440) of bondable metals are restricted to localized areas surrounding bond spots. A semiconductor chip (450) is attached to the pad and wire-bonded (460) to the bond spots. A package (470) encapsulates the chip, wires, pad, and lead portions, and secures the leadframe into the package by filling the through-holes, windows, grooves, and indents.
Abstract:
A lead frame device may include an integral die pad member, two separate finger members, a central body portion, each of the finger members have a top and a bottom surface connected by a peripheral edge surface. The lead frame also has a first ear portion, and a second ear portion, each has an ear top surface and an ear bottom surface coplanar with the top surface and bottom surface of the central body portion. The lead frame also has a first longitudinally extending groove and second longitudinally extending groove separate the first ear portion and the second ear portion from the central portion. The first ear portion and the second ear portion each have an abutment surface.
Abstract:
A method of making an integrated circuit (IC) package including electrically and physically attaching a die to an interposer, attaching the interposer to a bottom leadframe, attaching a discrete circuit component to the interposer and attaching a top leadframe to the bottom leadframe.
Abstract:
A multilevel leadframe for an integrated circuit package is provided that has a plurality of lead lines formed in a first level and bond pads formed in a second level. A first set of bond pads is arranged in a first row and are separated from an adjacent bond pad by a bond pad clearance distance. A second set of bond pads is arranged in second row adjacent the first row of bond pads. Each bond pad in the second row may be connected to one of the plurality of lead lines on the first level that is routed between adjacent bond pads in the first row. Since the bond pads in the first row are on a different level then the lead lines, the bond pads may be spaced close together.
Abstract:
A leadframe for electronic systems comprising a first sub-leadframe connected by links to a second sub-leadframe, the first and second sub-leadframe connected by tiebars to a frame; and each link having a neck suitable for bending the link, the necks arrayed in a line operable as the axis for bending the second sub-leadframe towards the first sub-leadframe with the necks operable as rotation pivots.
Abstract:
A method for forming a multilevel leadframe for an integrated circuit is provided. A conductive sheet is etched from one side to form a thinner region within a frame region for leads lines and bond pads. The conductive sheet is etched to form a plurality of bond pads in a first level of the thinner region arranged in at least a first row and a second row. Each bond pad has a pad width and is separated from an adjacent bond pad by a bond pad clearance distance. The conductive sheet is etched from an opposite side to form a plurality of lead lines in a second level of the thinner region having a line width and is separated from an adjacent lead line by at least a lead line clearance distance. Each bond pad of the second plurality of bond pads is connected to one of the plurality of lead lines on the second level that is routed between adjacent bond pads in the first row, so that the lead lines are routed on a different level from the bond pads.