Abstract:
A method and apparatus for processing a depth image determines a number of mods (NoM) for corresponding pixels in a plurality of depth images. The corresponding pixels may represent a same three-dimensional (3D) point. The NoM may be determined to be a value for minimizing a Markov random field (MRF) energy. A depth value for one depth image may be recovered, and a depth value for another depth image may be updated using the recovered depth value.
Abstract:
A method of acquiring geometry of a specular object is provided. Based on a single-view depth image, the method may include receiving an input of a depth image, estimating a missing depth value based on connectivity with a neighboring value in a local area of the depth image, and correcting the missing depth value. Based on a composite image, the method may include receiving an input of a composite image, calibrating the composite image, detecting an error area in the calibrated composite image, and correcting a missing depth value of the error area.
Abstract:
Provided is a synthesis system of a time-of-flight (ToF) camera and a stereo camera for reliable wide range depth acquisition and a method therefor. The synthesis system may estimate an error per pixel of a depth image, may calculate a value of a maximum distance multiple per pixel of the depth image using the error per pixel of the depth image, a left color image, and a right color image, and may generate a reconstructed depth image by conducting phase unwrapping on the depth image using the value of the maximum distance multiple per pixel of the depth image.
Abstract:
A method of acquiring geometry of a specular object is provided. Based on a single-view depth image, the method may include receiving an input of a depth image, estimating a missing depth value based on connectivity with a neighboring value in a local area of the depth image, and correcting the missing depth value. Based on a composite image, the method may include receiving an input of a composite image, calibrating the composite image, detecting an error area in the calibrated composite image, and correcting a missing depth value of the error area.
Abstract:
Provided is an image processing apparatus and method for detecting a transparent image from an input image. The image processing apparatus may include an image segmenting unit to segment an input image into a plurality of segments, a likelihood determining unit to determine a likelihood that a transparent object is present between adjacent segments among the plurality of segments, and an object detecting unit to detect the transparent object from the input image based on the likelihood.
Abstract:
An apparatus and method for processing three-dimensional (3D) information is described. The 3D information processing apparatus may measure first depth information of an object using a sensor apparatus such as a depth camera, may estimate a foreground depth of the object, a background depth of a background, and a degree of transparency of the object, may estimate second depth information of the object based on the estimated foreground depth, background depth, and degree of transparency, and may determine the foreground depth, the background depth, and the degree of transparency through comparison between the measured first depth information and the estimated second depth information.